纳米颗粒驱动的DREB/CBF转录因子调控增强了不同植物物种的铅修复

IF 7.7
Fazal Hussain , Fazal Hadi , Nasir Ali
{"title":"纳米颗粒驱动的DREB/CBF转录因子调控增强了不同植物物种的铅修复","authors":"Fazal Hussain ,&nbsp;Fazal Hadi ,&nbsp;Nasir Ali","doi":"10.1016/j.plana.2025.100189","DOIUrl":null,"url":null,"abstract":"<div><div>Lead (Pb) contamination in the environment poses a significant threat to plant health and ecosystem stability, necessitating advanced strategies to enhance phytoremediation efficacy. In this study, we investigated the potential of foliar-applied nanoparticles (NPs) to modulate stress-responsive transcription factors (<em>DREB1A, DREB1B, DREB1F,</em> and <em>CBF</em>) and biochemical pathways, thereby improving Pb tolerance and accumulation in <em>Cannabis sativa, Ricinus communis,</em> and <em>Parthenium hysterophorus</em>. Plants were subjected to Pb stress (200 ppm) and treated with copper, iron, magnesium, manganese, molybdenum, or zinc NPs (15 ppm), followed by a comprehensive evaluation of genomic responses, biochemical markers, and Pb uptake. Our findings reveal species- and NP-specific regulatory mechanisms governing Pb stress adaptation. Copper and molybdenum NPs markedly up regulated <em>DREB1A</em> and <em>CBF</em> expression in <em>R. communis</em> and <em>C. sativa</em>, correlating with increased proline accumulation (R² = 0.95), phenolic content, and Pb uptake. Molybdenum NPs facilitated the highest Pb accumulation in <em>R. communis</em> (0.63 ± 0.02 mg/g), whereas manganese NPs maximized Pb uptake in <em>C. sativa</em> (0.61 ± 0.05 mg/g). In contrast, <em>P. hysterophorus</em> exhibited minimal <em>DREB1F</em> induction but significant <em>CBF</em> activation under iron NP treatment, leading to Pb accumulation of 0.54 ± 0.05 mg/g. Biochemical analyses demonstrated strong correlations (R² = 0.99) between stress metabolite synthesis and transcriptional regulation, reinforcing the role of NPs in modulating molecular responses to Pb stress. These findings endorse the prime role of nanoparticle-mediated gene activation in enhancing phytoremediation efficiency. By integrating molecular and biochemical insights, this study provides a framework for species-specific NP applications to optimize eco-friendly remediation strategies for heavy metal-contaminated environments.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"13 ","pages":"Article 100189"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle-driven modulation of DREB/CBF transcription factors enhances lead phytoremediation in diverse plant species\",\"authors\":\"Fazal Hussain ,&nbsp;Fazal Hadi ,&nbsp;Nasir Ali\",\"doi\":\"10.1016/j.plana.2025.100189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lead (Pb) contamination in the environment poses a significant threat to plant health and ecosystem stability, necessitating advanced strategies to enhance phytoremediation efficacy. In this study, we investigated the potential of foliar-applied nanoparticles (NPs) to modulate stress-responsive transcription factors (<em>DREB1A, DREB1B, DREB1F,</em> and <em>CBF</em>) and biochemical pathways, thereby improving Pb tolerance and accumulation in <em>Cannabis sativa, Ricinus communis,</em> and <em>Parthenium hysterophorus</em>. Plants were subjected to Pb stress (200 ppm) and treated with copper, iron, magnesium, manganese, molybdenum, or zinc NPs (15 ppm), followed by a comprehensive evaluation of genomic responses, biochemical markers, and Pb uptake. Our findings reveal species- and NP-specific regulatory mechanisms governing Pb stress adaptation. Copper and molybdenum NPs markedly up regulated <em>DREB1A</em> and <em>CBF</em> expression in <em>R. communis</em> and <em>C. sativa</em>, correlating with increased proline accumulation (R² = 0.95), phenolic content, and Pb uptake. Molybdenum NPs facilitated the highest Pb accumulation in <em>R. communis</em> (0.63 ± 0.02 mg/g), whereas manganese NPs maximized Pb uptake in <em>C. sativa</em> (0.61 ± 0.05 mg/g). In contrast, <em>P. hysterophorus</em> exhibited minimal <em>DREB1F</em> induction but significant <em>CBF</em> activation under iron NP treatment, leading to Pb accumulation of 0.54 ± 0.05 mg/g. Biochemical analyses demonstrated strong correlations (R² = 0.99) between stress metabolite synthesis and transcriptional regulation, reinforcing the role of NPs in modulating molecular responses to Pb stress. These findings endorse the prime role of nanoparticle-mediated gene activation in enhancing phytoremediation efficiency. By integrating molecular and biochemical insights, this study provides a framework for species-specific NP applications to optimize eco-friendly remediation strategies for heavy metal-contaminated environments.</div></div>\",\"PeriodicalId\":101029,\"journal\":{\"name\":\"Plant Nano Biology\",\"volume\":\"13 \",\"pages\":\"Article 100189\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Nano Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773111125000567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环境铅污染严重威胁植物健康和生态系统稳定,需要先进的修复策略来提高植物修复效果。在这项研究中,我们研究了叶面施用纳米颗粒(NPs)调节应激响应转录因子(DREB1A, DREB1B, DREB1F和CBF)和生化途径的潜力,从而提高大麻,蓖麻和子宫Parthenium hysterophorus的Pb耐受性和积累。将植物置于Pb胁迫(200 ppm)和铜、铁、镁、锰、钼或锌NPs(15 ppm)处理下,然后对基因组响应、生化标记和Pb摄取进行综合评估。我们的研究结果揭示了物种和np特异性的铅胁迫适应调节机制。铜和钼NPs显著上调了红豆和红花中DREB1A和CBF的表达,与脯氨酸积累(R²= 0.95)、酚类含量和铅吸收增加相关。钼NPs促进了红豆对Pb的最大积累(0.63 ± 0.02 mg/g),而锰NPs则促进了红豆对Pb的最大吸收(0.61 ± 0.05 mg/g)。相比之下,铁NP处理下,子宫草对DREB1F的诱导作用最小,但对CBF的激活作用显著,Pb积累量为0.54 ± 0.05 mg/g。生化分析表明,胁迫代谢物合成与转录调控之间存在很强的相关性(R²= 0.99),这进一步证实了NPs在Pb胁迫下的分子调控作用。这些发现证实了纳米颗粒介导的基因激活在提高植物修复效率方面的主要作用。通过整合分子和生物化学的见解,本研究为物种特异性NP应用提供了一个框架,以优化重金属污染环境的生态修复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoparticle-driven modulation of DREB/CBF transcription factors enhances lead phytoremediation in diverse plant species
Lead (Pb) contamination in the environment poses a significant threat to plant health and ecosystem stability, necessitating advanced strategies to enhance phytoremediation efficacy. In this study, we investigated the potential of foliar-applied nanoparticles (NPs) to modulate stress-responsive transcription factors (DREB1A, DREB1B, DREB1F, and CBF) and biochemical pathways, thereby improving Pb tolerance and accumulation in Cannabis sativa, Ricinus communis, and Parthenium hysterophorus. Plants were subjected to Pb stress (200 ppm) and treated with copper, iron, magnesium, manganese, molybdenum, or zinc NPs (15 ppm), followed by a comprehensive evaluation of genomic responses, biochemical markers, and Pb uptake. Our findings reveal species- and NP-specific regulatory mechanisms governing Pb stress adaptation. Copper and molybdenum NPs markedly up regulated DREB1A and CBF expression in R. communis and C. sativa, correlating with increased proline accumulation (R² = 0.95), phenolic content, and Pb uptake. Molybdenum NPs facilitated the highest Pb accumulation in R. communis (0.63 ± 0.02 mg/g), whereas manganese NPs maximized Pb uptake in C. sativa (0.61 ± 0.05 mg/g). In contrast, P. hysterophorus exhibited minimal DREB1F induction but significant CBF activation under iron NP treatment, leading to Pb accumulation of 0.54 ± 0.05 mg/g. Biochemical analyses demonstrated strong correlations (R² = 0.99) between stress metabolite synthesis and transcriptional regulation, reinforcing the role of NPs in modulating molecular responses to Pb stress. These findings endorse the prime role of nanoparticle-mediated gene activation in enhancing phytoremediation efficiency. By integrating molecular and biochemical insights, this study provides a framework for species-specific NP applications to optimize eco-friendly remediation strategies for heavy metal-contaminated environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信