高性能柔性超级电容器用芘接枝碳纳米管薄膜的表面工程

IF 8.7 Q1 CHEMISTRY, PHYSICAL
Se Eun Jeong , Junghwan Kim , Dongju Lee , Dae-Yoon Kim , Jun Yeon Hwang , Nam Dong Kim , Jungwon Kim , Nam Ho You , Bon-Cheol Ku , Seo Gyun Kim
{"title":"高性能柔性超级电容器用芘接枝碳纳米管薄膜的表面工程","authors":"Se Eun Jeong ,&nbsp;Junghwan Kim ,&nbsp;Dongju Lee ,&nbsp;Dae-Yoon Kim ,&nbsp;Jun Yeon Hwang ,&nbsp;Nam Dong Kim ,&nbsp;Jungwon Kim ,&nbsp;Nam Ho You ,&nbsp;Bon-Cheol Ku ,&nbsp;Seo Gyun Kim","doi":"10.1016/j.apsadv.2025.100841","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of carbon nanotube (CNT)-based supercapacitors has been limited by their low surface area and lack of redox-active sites. Herein, we present a simple and scalable method to functionalize single-walled CNTs with pyrene moieties through radical grafting, enabled by thermal desulfonation of sulfonated pyrene. To enhance grafting efficiency, CNTs were intentionally shortened, increasing the number of reactive ends. The resulting pyrene-grafted short CNTs (PYgSCNTs) exhibited increased surface area and redox functionality without compromising the intrinsic electrical and mechanical properties of CNTs. Morphological and structural analyses confirmed successful grafting and formation of mesoporous structures. Electrochemical characterization revealed that PYgSCNT films deliver significantly improved capacitance, achieving a specific capacitance of 59.2 F g⁻¹, excellent rate capability, and stable cycling over 2000 cycles. A flexible supercapacitor device fabricated using PYgSCNT films as electrodes demonstrated a high volumetric energy density of 8.9 mW h cm⁻³ and power density of 878 mW cm⁻³, surpassing the performance of conventional CNT-containing devices. This work offers a non-destructive, solution-processable approach for surface engineering of CNTs, opening new avenues for the development of high-performance, flexible energy storage systems.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"29 ","pages":"Article 100841"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface engineering of carbon nanotube films via pyrene grafting for high-performance flexible supercapacitors\",\"authors\":\"Se Eun Jeong ,&nbsp;Junghwan Kim ,&nbsp;Dongju Lee ,&nbsp;Dae-Yoon Kim ,&nbsp;Jun Yeon Hwang ,&nbsp;Nam Dong Kim ,&nbsp;Jungwon Kim ,&nbsp;Nam Ho You ,&nbsp;Bon-Cheol Ku ,&nbsp;Seo Gyun Kim\",\"doi\":\"10.1016/j.apsadv.2025.100841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of carbon nanotube (CNT)-based supercapacitors has been limited by their low surface area and lack of redox-active sites. Herein, we present a simple and scalable method to functionalize single-walled CNTs with pyrene moieties through radical grafting, enabled by thermal desulfonation of sulfonated pyrene. To enhance grafting efficiency, CNTs were intentionally shortened, increasing the number of reactive ends. The resulting pyrene-grafted short CNTs (PYgSCNTs) exhibited increased surface area and redox functionality without compromising the intrinsic electrical and mechanical properties of CNTs. Morphological and structural analyses confirmed successful grafting and formation of mesoporous structures. Electrochemical characterization revealed that PYgSCNT films deliver significantly improved capacitance, achieving a specific capacitance of 59.2 F g⁻¹, excellent rate capability, and stable cycling over 2000 cycles. A flexible supercapacitor device fabricated using PYgSCNT films as electrodes demonstrated a high volumetric energy density of 8.9 mW h cm⁻³ and power density of 878 mW cm⁻³, surpassing the performance of conventional CNT-containing devices. This work offers a non-destructive, solution-processable approach for surface engineering of CNTs, opening new avenues for the development of high-performance, flexible energy storage systems.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"29 \",\"pages\":\"Article 100841\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523925001515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于碳纳米管(CNT)的超级电容器的性能一直受到其低表面积和缺乏氧化还原活性位点的限制。在此,我们提出了一种简单且可扩展的方法,通过磺化芘的热脱硫,通过自由基接枝来功能化带有芘基团的单壁碳纳米管。为了提高接枝效率,有意缩短了CNTs,增加了反应端数量。所得的芘接枝短碳纳米管(PYgSCNTs)表现出增加的表面积和氧化还原功能,而不影响碳纳米管的固有电学和机械性能。形态学和结构分析证实了成功的接枝和介孔结构的形成。电化学表征表明,PYgSCNT膜具有显著提高的电容,比电容达到59.2 F - 1,具有优异的速率能力,并且在2000次循环中稳定循环。使用PYgSCNT薄膜作为电极制作的柔性超级电容器装置显示出8.9 mW h cm⁻³的高体积能量密度和878 mW cm⁻³的功率密度,超过了传统碳纳米管装置的性能。这项工作为碳纳米管的表面工程提供了一种非破坏性的、溶液可加工的方法,为开发高性能、灵活的储能系统开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface engineering of carbon nanotube films via pyrene grafting for high-performance flexible supercapacitors
The performance of carbon nanotube (CNT)-based supercapacitors has been limited by their low surface area and lack of redox-active sites. Herein, we present a simple and scalable method to functionalize single-walled CNTs with pyrene moieties through radical grafting, enabled by thermal desulfonation of sulfonated pyrene. To enhance grafting efficiency, CNTs were intentionally shortened, increasing the number of reactive ends. The resulting pyrene-grafted short CNTs (PYgSCNTs) exhibited increased surface area and redox functionality without compromising the intrinsic electrical and mechanical properties of CNTs. Morphological and structural analyses confirmed successful grafting and formation of mesoporous structures. Electrochemical characterization revealed that PYgSCNT films deliver significantly improved capacitance, achieving a specific capacitance of 59.2 F g⁻¹, excellent rate capability, and stable cycling over 2000 cycles. A flexible supercapacitor device fabricated using PYgSCNT films as electrodes demonstrated a high volumetric energy density of 8.9 mW h cm⁻³ and power density of 878 mW cm⁻³, surpassing the performance of conventional CNT-containing devices. This work offers a non-destructive, solution-processable approach for surface engineering of CNTs, opening new avenues for the development of high-performance, flexible energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信