利用WTe2独特的扭曲晶体对称性,在室温下实现Fe3GaTe2的无场高效自旋轨道转矩切换

IF 8.7 Q1 CHEMISTRY, PHYSICAL
Pradeep Raj Sharma , Bogeun Jang , Gaojie Zhang , Wen Jin , Haixin Chang , Jongill Hong
{"title":"利用WTe2独特的扭曲晶体对称性,在室温下实现Fe3GaTe2的无场高效自旋轨道转矩切换","authors":"Pradeep Raj Sharma ,&nbsp;Bogeun Jang ,&nbsp;Gaojie Zhang ,&nbsp;Wen Jin ,&nbsp;Haixin Chang ,&nbsp;Jongill Hong","doi":"10.1016/j.apsadv.2025.100847","DOIUrl":null,"url":null,"abstract":"<div><div>Spin-orbit torque (SOT) is a highly viable mechanism for achieving low-energy and high-speed switching in spintronic devices. Two-dimensional (2D) van der Waals (vdW) materials and their heterostructures have proven their scalability and energy effectiveness for device operation. Here, we demonstrate that SOT can be robustly realized in a heterostructure composed of the 2D-vdW ferromagnetic material (FM) Fe<sub>3</sub>GaTe<sub>2</sub> (FGaT) and the 2D-vdW topological semimetal WTe<sub>2</sub> at room temperature. The anisotropic Fermi surface originating from the uniquely reduced crystal symmetry of WTe<sub>2</sub> enables field-free deterministic SOT switching. We report an unprecedentedly low threshold switching current density of 6.5 × 10<sup>9</sup> A <em>m</em><sup>−2</sup> at zero field and a spin Hall angle (<span><math><mrow><msub><mi>θ</mi><mrow><mi>S</mi><mi>H</mi></mrow></msub><mrow><mo>)</mo></mrow></mrow></math></span> of 8.5. These results demonstrate a nearly 100-fold improvement in device performance over all previously reported 3D heavy metal (HM)/FM systems, supported by a second harmonic-modulated nonlinear signal measurement implemented to ensure SOT analysis and reliability. The spin Hall conductivity <span><math><mrow><mo>(</mo><msub><mi>σ</mi><mrow><mi>S</mi><mi>H</mi></mrow></msub><mo>)</mo></mrow></math></span> and the switching power density <span><math><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>s</mi><mi>w</mi></mrow></msub><mo>)</mo></mrow></math></span> reported are about 1.3 × 10<sup>6</sup> S <em>m</em><sup>−1</sup> and 0.33 × 10<sup>15</sup> W <em>m</em><sup>−3</sup>, respectively, supporting the efficient device performance at low power consumption. Our result highlights that Fe<sub>3</sub>GaTe<sub>2</sub>, coupled with the strong spin–orbit coupling and low crystal symmetry of WTe<sub>2</sub>, in the form of 2D-vdW heterostructure (WTe<sub>2</sub>/Fe<sub>3</sub>GaTe<sub>2</sub>), offers a promising platform for generating substantial torque on magnetization at room temperature. This leads to more efficient and easier switching, paving the way for developing next-generation, highly advanced, room-temperature spin-electronic devices.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"29 ","pages":"Article 100847"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field-free highly efficient spin-orbit torque switching in Fe3GaTe2 at room temperature enabled by a unique distorted crystal symmetry of WTe2\",\"authors\":\"Pradeep Raj Sharma ,&nbsp;Bogeun Jang ,&nbsp;Gaojie Zhang ,&nbsp;Wen Jin ,&nbsp;Haixin Chang ,&nbsp;Jongill Hong\",\"doi\":\"10.1016/j.apsadv.2025.100847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spin-orbit torque (SOT) is a highly viable mechanism for achieving low-energy and high-speed switching in spintronic devices. Two-dimensional (2D) van der Waals (vdW) materials and their heterostructures have proven their scalability and energy effectiveness for device operation. Here, we demonstrate that SOT can be robustly realized in a heterostructure composed of the 2D-vdW ferromagnetic material (FM) Fe<sub>3</sub>GaTe<sub>2</sub> (FGaT) and the 2D-vdW topological semimetal WTe<sub>2</sub> at room temperature. The anisotropic Fermi surface originating from the uniquely reduced crystal symmetry of WTe<sub>2</sub> enables field-free deterministic SOT switching. We report an unprecedentedly low threshold switching current density of 6.5 × 10<sup>9</sup> A <em>m</em><sup>−2</sup> at zero field and a spin Hall angle (<span><math><mrow><msub><mi>θ</mi><mrow><mi>S</mi><mi>H</mi></mrow></msub><mrow><mo>)</mo></mrow></mrow></math></span> of 8.5. These results demonstrate a nearly 100-fold improvement in device performance over all previously reported 3D heavy metal (HM)/FM systems, supported by a second harmonic-modulated nonlinear signal measurement implemented to ensure SOT analysis and reliability. The spin Hall conductivity <span><math><mrow><mo>(</mo><msub><mi>σ</mi><mrow><mi>S</mi><mi>H</mi></mrow></msub><mo>)</mo></mrow></math></span> and the switching power density <span><math><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>s</mi><mi>w</mi></mrow></msub><mo>)</mo></mrow></math></span> reported are about 1.3 × 10<sup>6</sup> S <em>m</em><sup>−1</sup> and 0.33 × 10<sup>15</sup> W <em>m</em><sup>−3</sup>, respectively, supporting the efficient device performance at low power consumption. Our result highlights that Fe<sub>3</sub>GaTe<sub>2</sub>, coupled with the strong spin–orbit coupling and low crystal symmetry of WTe<sub>2</sub>, in the form of 2D-vdW heterostructure (WTe<sub>2</sub>/Fe<sub>3</sub>GaTe<sub>2</sub>), offers a promising platform for generating substantial torque on magnetization at room temperature. This leads to more efficient and easier switching, paving the way for developing next-generation, highly advanced, room-temperature spin-electronic devices.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"29 \",\"pages\":\"Article 100847\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523925001576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自旋轨道转矩(SOT)是实现自旋电子器件低能高速开关的一种非常可行的机制。二维(2D)范德华(vdW)材料及其异质结构已经证明了其可扩展性和能量有效性。在这里,我们证明了SOT可以在室温下在由2D-vdW铁磁材料(FM) Fe3GaTe2 (FGaT)和2D-vdW拓扑半金属WTe2组成的异质结构中稳健地实现。各向异性费米表面源于WTe2独特的晶体对称性降低,使无场确定性SOT开关成为可能。我们报道了前所未有的低阈值开关电流密度,在零场为6.5 × 109 A m−2,自旋霍尔角(θSH)为8.5。这些结果表明,与之前报道的所有3D重金属(HM)/FM系统相比,设备性能提高了近100倍,并采用了二次谐波调制非线性信号测量,以确保SOT分析和可靠性。所测得的自旋霍尔电导率(σSH)和开关功率密度(Psw)分别约为1.3 × 106 S m−1和0.33 × 1015 W m−3,支持器件在低功耗下的高效性能。我们的研究结果表明,Fe3GaTe2与WTe2的强自旋轨道耦合和低晶体对称性相结合,以2D-vdW异质结构(WTe2/Fe3GaTe2)的形式,为在室温下产生大量的磁化转矩提供了一个有希望的平台。这导致更有效和更容易的开关,为开发下一代,高度先进的室温自旋电子设备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field-free highly efficient spin-orbit torque switching in Fe3GaTe2 at room temperature enabled by a unique distorted crystal symmetry of WTe2
Spin-orbit torque (SOT) is a highly viable mechanism for achieving low-energy and high-speed switching in spintronic devices. Two-dimensional (2D) van der Waals (vdW) materials and their heterostructures have proven their scalability and energy effectiveness for device operation. Here, we demonstrate that SOT can be robustly realized in a heterostructure composed of the 2D-vdW ferromagnetic material (FM) Fe3GaTe2 (FGaT) and the 2D-vdW topological semimetal WTe2 at room temperature. The anisotropic Fermi surface originating from the uniquely reduced crystal symmetry of WTe2 enables field-free deterministic SOT switching. We report an unprecedentedly low threshold switching current density of 6.5 × 109 A m−2 at zero field and a spin Hall angle (θSH) of 8.5. These results demonstrate a nearly 100-fold improvement in device performance over all previously reported 3D heavy metal (HM)/FM systems, supported by a second harmonic-modulated nonlinear signal measurement implemented to ensure SOT analysis and reliability. The spin Hall conductivity (σSH) and the switching power density (Psw) reported are about 1.3 × 106 S m−1 and 0.33 × 1015 W m−3, respectively, supporting the efficient device performance at low power consumption. Our result highlights that Fe3GaTe2, coupled with the strong spin–orbit coupling and low crystal symmetry of WTe2, in the form of 2D-vdW heterostructure (WTe2/Fe3GaTe2), offers a promising platform for generating substantial torque on magnetization at room temperature. This leads to more efficient and easier switching, paving the way for developing next-generation, highly advanced, room-temperature spin-electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信