Sven Hofmann, Markus Kautz, Sven Sonnemann, Lutz-Florian Otto
{"title":"在树皮甲虫陷阱捕获显著不确定性由于不同的信息素释放从分配器和局部陷阱的位置","authors":"Sven Hofmann, Markus Kautz, Sven Sonnemann, Lutz-Florian Otto","doi":"10.1007/s10340-025-01924-z","DOIUrl":null,"url":null,"abstract":"<p>Tree-killing bark beetles are important pests severely affecting forests worldwide. An understanding of their spatio-temporal swarming intensity, typically assessed with pheromone traps, is crucial to guide management actions. While multiple factors have been shown to affect trap catches, we lack knowledge of the effects of inherent dispenser-dependent variations in pheromone release and of local trap position. In a laboratory experiment, we assessed the influence of filling level and temperature on the release rate (<i>Rr</i>) of three commonly used pheromone dispenser products for bark beetles (Pheroprax®, Chalcoprax®, Curviwit®). By conducting a complementary field study at two sites in Germany, we quantified the effect of varying <i>Rr</i> of Pheroprax® and trap position on the number of <i>Ips typographus</i> trapped. <i>Rr</i> of all three products correlated with temperature and strongly declined during the application period in Pheroprax® and Chalcoprax®. In the field, both the temporal variability in filling level and the ambient temperature similarly affected <i>Rr</i>, which in combination led to a fivefold change in trap catches. Additionally, catches varied by a similar magnitude due to local trap position, partly explained by the distance from the forest edge. The large uncertainties found in pheromone trap catches, which may also apply to other pest species, highlight the need for careful interpretation (or correction) of trap data. As a potential improvement of monitoring, we propose swarming models to facilitate more accurate predictions of infestation risk by (<i>i</i>) incorporating uncertainties arising from trap-related factors and (<i>ii</i>) providing continuous information on the spatio-temporal abundance of pest species.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"33 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significant uncertainty in bark beetle trap catches due to varying pheromone release from dispensers and local trap position\",\"authors\":\"Sven Hofmann, Markus Kautz, Sven Sonnemann, Lutz-Florian Otto\",\"doi\":\"10.1007/s10340-025-01924-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tree-killing bark beetles are important pests severely affecting forests worldwide. An understanding of their spatio-temporal swarming intensity, typically assessed with pheromone traps, is crucial to guide management actions. While multiple factors have been shown to affect trap catches, we lack knowledge of the effects of inherent dispenser-dependent variations in pheromone release and of local trap position. In a laboratory experiment, we assessed the influence of filling level and temperature on the release rate (<i>Rr</i>) of three commonly used pheromone dispenser products for bark beetles (Pheroprax®, Chalcoprax®, Curviwit®). By conducting a complementary field study at two sites in Germany, we quantified the effect of varying <i>Rr</i> of Pheroprax® and trap position on the number of <i>Ips typographus</i> trapped. <i>Rr</i> of all three products correlated with temperature and strongly declined during the application period in Pheroprax® and Chalcoprax®. In the field, both the temporal variability in filling level and the ambient temperature similarly affected <i>Rr</i>, which in combination led to a fivefold change in trap catches. Additionally, catches varied by a similar magnitude due to local trap position, partly explained by the distance from the forest edge. The large uncertainties found in pheromone trap catches, which may also apply to other pest species, highlight the need for careful interpretation (or correction) of trap data. As a potential improvement of monitoring, we propose swarming models to facilitate more accurate predictions of infestation risk by (<i>i</i>) incorporating uncertainties arising from trap-related factors and (<i>ii</i>) providing continuous information on the spatio-temporal abundance of pest species.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-025-01924-z\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01924-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Significant uncertainty in bark beetle trap catches due to varying pheromone release from dispensers and local trap position
Tree-killing bark beetles are important pests severely affecting forests worldwide. An understanding of their spatio-temporal swarming intensity, typically assessed with pheromone traps, is crucial to guide management actions. While multiple factors have been shown to affect trap catches, we lack knowledge of the effects of inherent dispenser-dependent variations in pheromone release and of local trap position. In a laboratory experiment, we assessed the influence of filling level and temperature on the release rate (Rr) of three commonly used pheromone dispenser products for bark beetles (Pheroprax®, Chalcoprax®, Curviwit®). By conducting a complementary field study at two sites in Germany, we quantified the effect of varying Rr of Pheroprax® and trap position on the number of Ips typographus trapped. Rr of all three products correlated with temperature and strongly declined during the application period in Pheroprax® and Chalcoprax®. In the field, both the temporal variability in filling level and the ambient temperature similarly affected Rr, which in combination led to a fivefold change in trap catches. Additionally, catches varied by a similar magnitude due to local trap position, partly explained by the distance from the forest edge. The large uncertainties found in pheromone trap catches, which may also apply to other pest species, highlight the need for careful interpretation (or correction) of trap data. As a potential improvement of monitoring, we propose swarming models to facilitate more accurate predictions of infestation risk by (i) incorporating uncertainties arising from trap-related factors and (ii) providing continuous information on the spatio-temporal abundance of pest species.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.