在树皮甲虫陷阱捕获显著不确定性由于不同的信息素释放从分配器和局部陷阱的位置

IF 4.1 1区 农林科学 Q1 ENTOMOLOGY
Sven Hofmann, Markus Kautz, Sven Sonnemann, Lutz-Florian Otto
{"title":"在树皮甲虫陷阱捕获显著不确定性由于不同的信息素释放从分配器和局部陷阱的位置","authors":"Sven Hofmann, Markus Kautz, Sven Sonnemann, Lutz-Florian Otto","doi":"10.1007/s10340-025-01924-z","DOIUrl":null,"url":null,"abstract":"<p>Tree-killing bark beetles are important pests severely affecting forests worldwide. An understanding of their spatio-temporal swarming intensity, typically assessed with pheromone traps, is crucial to guide management actions. While multiple factors have been shown to affect trap catches, we lack knowledge of the effects of inherent dispenser-dependent variations in pheromone release and of local trap position. In a laboratory experiment, we assessed the influence of filling level and temperature on the release rate (<i>Rr</i>) of three commonly used pheromone dispenser products for bark beetles (Pheroprax®, Chalcoprax®, Curviwit®). By conducting a complementary field study at two sites in Germany, we quantified the effect of varying <i>Rr</i> of Pheroprax® and trap position on the number of <i>Ips typographus</i> trapped. <i>Rr</i> of all three products correlated with temperature and strongly declined during the application period in Pheroprax® and Chalcoprax®. In the field, both the temporal variability in filling level and the ambient temperature similarly affected <i>Rr</i>, which in combination led to a fivefold change in trap catches. Additionally, catches varied by a similar magnitude due to local trap position, partly explained by the distance from the forest edge. The large uncertainties found in pheromone trap catches, which may also apply to other pest species, highlight the need for careful interpretation (or correction) of trap data. As a potential improvement of monitoring, we propose swarming models to facilitate more accurate predictions of infestation risk by (<i>i</i>) incorporating uncertainties arising from trap-related factors and (<i>ii</i>) providing continuous information on the spatio-temporal abundance of pest species.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"33 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significant uncertainty in bark beetle trap catches due to varying pheromone release from dispensers and local trap position\",\"authors\":\"Sven Hofmann, Markus Kautz, Sven Sonnemann, Lutz-Florian Otto\",\"doi\":\"10.1007/s10340-025-01924-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tree-killing bark beetles are important pests severely affecting forests worldwide. An understanding of their spatio-temporal swarming intensity, typically assessed with pheromone traps, is crucial to guide management actions. While multiple factors have been shown to affect trap catches, we lack knowledge of the effects of inherent dispenser-dependent variations in pheromone release and of local trap position. In a laboratory experiment, we assessed the influence of filling level and temperature on the release rate (<i>Rr</i>) of three commonly used pheromone dispenser products for bark beetles (Pheroprax®, Chalcoprax®, Curviwit®). By conducting a complementary field study at two sites in Germany, we quantified the effect of varying <i>Rr</i> of Pheroprax® and trap position on the number of <i>Ips typographus</i> trapped. <i>Rr</i> of all three products correlated with temperature and strongly declined during the application period in Pheroprax® and Chalcoprax®. In the field, both the temporal variability in filling level and the ambient temperature similarly affected <i>Rr</i>, which in combination led to a fivefold change in trap catches. Additionally, catches varied by a similar magnitude due to local trap position, partly explained by the distance from the forest edge. The large uncertainties found in pheromone trap catches, which may also apply to other pest species, highlight the need for careful interpretation (or correction) of trap data. As a potential improvement of monitoring, we propose swarming models to facilitate more accurate predictions of infestation risk by (<i>i</i>) incorporating uncertainties arising from trap-related factors and (<i>ii</i>) providing continuous information on the spatio-temporal abundance of pest species.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-025-01924-z\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01924-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

树皮甲虫是严重影响世界森林的重要害虫。了解它们的时空聚集强度,通常用信息素陷阱评估,对指导管理行动至关重要。虽然多种因素已被证明会影响诱捕器的捕获量,但我们缺乏对信息素释放和局部诱捕器位置的固有依赖变化的影响的了解。在室内实验中,我们评估了填充水平和温度对三种常用树皮甲虫信息素分配产品(Pheroprax®、Chalcoprax®、Curviwit®)释放率的影响。通过在德国的两个地点进行补充性的实地研究,我们量化了不同浓度和诱捕器位置对诱捕Ips数量的影响。在phoprax®和Chalcoprax®中,三种产品的Rr均与温度相关,且在施用期间显著下降。在野外,灌水水平和环境温度的时间变化同样影响Rr,两者共同导致捕集量的5倍变化。此外,由于捕集器的位置不同,渔获量也有相似的变化,部分原因是与森林边缘的距离。在信息素诱捕器捕获物中发现的巨大不确定性,也可能适用于其他害虫物种,突出表明需要仔细解释(或纠正)诱捕器数据。作为监测的潜在改进,我们提出了蜂群模型,通过(i)纳入陷阱相关因素引起的不确定性和(ii)提供害虫物种时空丰度的连续信息,以促进更准确的虫害风险预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significant uncertainty in bark beetle trap catches due to varying pheromone release from dispensers and local trap position

Tree-killing bark beetles are important pests severely affecting forests worldwide. An understanding of their spatio-temporal swarming intensity, typically assessed with pheromone traps, is crucial to guide management actions. While multiple factors have been shown to affect trap catches, we lack knowledge of the effects of inherent dispenser-dependent variations in pheromone release and of local trap position. In a laboratory experiment, we assessed the influence of filling level and temperature on the release rate (Rr) of three commonly used pheromone dispenser products for bark beetles (Pheroprax®, Chalcoprax®, Curviwit®). By conducting a complementary field study at two sites in Germany, we quantified the effect of varying Rr of Pheroprax® and trap position on the number of Ips typographus trapped. Rr of all three products correlated with temperature and strongly declined during the application period in Pheroprax® and Chalcoprax®. In the field, both the temporal variability in filling level and the ambient temperature similarly affected Rr, which in combination led to a fivefold change in trap catches. Additionally, catches varied by a similar magnitude due to local trap position, partly explained by the distance from the forest edge. The large uncertainties found in pheromone trap catches, which may also apply to other pest species, highlight the need for careful interpretation (or correction) of trap data. As a potential improvement of monitoring, we propose swarming models to facilitate more accurate predictions of infestation risk by (i) incorporating uncertainties arising from trap-related factors and (ii) providing continuous information on the spatio-temporal abundance of pest species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信