Farman Ullah, G. Guru-Pirasanna-Pandi, Ghulam Murtaza, Satyabrata Sarangi, Hina Gul, Xiaowei Li, Luis Enrique Chavarín-Gómez, Ricardo Ramírez-Romero, Raul Narciso C. Guedes, Nicolas Desneux, Yaobin Lu
{"title":"农业生态系统病虫害防治策略的演变:从化学管理到绿色管理的转变","authors":"Farman Ullah, G. Guru-Pirasanna-Pandi, Ghulam Murtaza, Satyabrata Sarangi, Hina Gul, Xiaowei Li, Luis Enrique Chavarín-Gómez, Ricardo Ramírez-Romero, Raul Narciso C. Guedes, Nicolas Desneux, Yaobin Lu","doi":"10.1007/s10340-025-01939-6","DOIUrl":null,"url":null,"abstract":"<p>The United Nations (UN) has made strong commitments toward achieving the sustainable development goals (SDGs), aiming to alleviate food scarcity, reduce hunger, and advance toward a carbon–neutral world. Ensuring food security and sustaining agricultural productivity to meet rapid population growth requires cultivating healthy, nutritious crops. However, the indiscriminate and excessive use of synthetic chemical pesticides has not only targeted pests but also disrupted the environment, compromising food quality, polluting ecosystems, and endangering beneficial insects within agroecosystems. To address these challenges, environmentally friendly pest management strategies have been integrated into the integrated pest management (IPM) framework, aiming to reduce farming communities’ reliance on chemical pesticides. Biological control methods, including predators, parasitoids, and microbial biopesticides (entomopathogens), play essential roles in these greener approaches. Botanical pesticides derived from plants, such as neem, pongamia, and citrus oils, are gaining attention as environmentally safe, non-toxic alternatives. Recent innovations also include genome-editing techniques, such as CRISPR-Cas9 and RNA interference (RNAi), which enhance crop and pest resilience, offering high specificity and ease of application. Additionally, nano-pesticide formulations allow controlled chemical release, optimizing pesticide usage through precise dosages administered at targeted intervals. In response to climate change, several climate-resilient pest management technologies have emerged, including remote sensing, information and communication technology (ICT)-based methods, and precision farming practices. These methods leverage sensors, mobile applications, and unmanned aerial vehicles (UAVs) for efficient pest monitoring and pesticide application. Collectively, these advancements emphasize reduced reliance on synthetic chemicals, promoting greener, residue-free pest control and supporting the cultivation of healthy, sustainable crops. This review comprehensively discusses these trends, focusing on sustainable, eco-friendly pest management approaches.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"8 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolving strategies in agroecosystem pest control: transitioning from chemical to green management\",\"authors\":\"Farman Ullah, G. Guru-Pirasanna-Pandi, Ghulam Murtaza, Satyabrata Sarangi, Hina Gul, Xiaowei Li, Luis Enrique Chavarín-Gómez, Ricardo Ramírez-Romero, Raul Narciso C. Guedes, Nicolas Desneux, Yaobin Lu\",\"doi\":\"10.1007/s10340-025-01939-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The United Nations (UN) has made strong commitments toward achieving the sustainable development goals (SDGs), aiming to alleviate food scarcity, reduce hunger, and advance toward a carbon–neutral world. Ensuring food security and sustaining agricultural productivity to meet rapid population growth requires cultivating healthy, nutritious crops. However, the indiscriminate and excessive use of synthetic chemical pesticides has not only targeted pests but also disrupted the environment, compromising food quality, polluting ecosystems, and endangering beneficial insects within agroecosystems. To address these challenges, environmentally friendly pest management strategies have been integrated into the integrated pest management (IPM) framework, aiming to reduce farming communities’ reliance on chemical pesticides. Biological control methods, including predators, parasitoids, and microbial biopesticides (entomopathogens), play essential roles in these greener approaches. Botanical pesticides derived from plants, such as neem, pongamia, and citrus oils, are gaining attention as environmentally safe, non-toxic alternatives. Recent innovations also include genome-editing techniques, such as CRISPR-Cas9 and RNA interference (RNAi), which enhance crop and pest resilience, offering high specificity and ease of application. Additionally, nano-pesticide formulations allow controlled chemical release, optimizing pesticide usage through precise dosages administered at targeted intervals. In response to climate change, several climate-resilient pest management technologies have emerged, including remote sensing, information and communication technology (ICT)-based methods, and precision farming practices. These methods leverage sensors, mobile applications, and unmanned aerial vehicles (UAVs) for efficient pest monitoring and pesticide application. Collectively, these advancements emphasize reduced reliance on synthetic chemicals, promoting greener, residue-free pest control and supporting the cultivation of healthy, sustainable crops. This review comprehensively discusses these trends, focusing on sustainable, eco-friendly pest management approaches.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-025-01939-6\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01939-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Evolving strategies in agroecosystem pest control: transitioning from chemical to green management
The United Nations (UN) has made strong commitments toward achieving the sustainable development goals (SDGs), aiming to alleviate food scarcity, reduce hunger, and advance toward a carbon–neutral world. Ensuring food security and sustaining agricultural productivity to meet rapid population growth requires cultivating healthy, nutritious crops. However, the indiscriminate and excessive use of synthetic chemical pesticides has not only targeted pests but also disrupted the environment, compromising food quality, polluting ecosystems, and endangering beneficial insects within agroecosystems. To address these challenges, environmentally friendly pest management strategies have been integrated into the integrated pest management (IPM) framework, aiming to reduce farming communities’ reliance on chemical pesticides. Biological control methods, including predators, parasitoids, and microbial biopesticides (entomopathogens), play essential roles in these greener approaches. Botanical pesticides derived from plants, such as neem, pongamia, and citrus oils, are gaining attention as environmentally safe, non-toxic alternatives. Recent innovations also include genome-editing techniques, such as CRISPR-Cas9 and RNA interference (RNAi), which enhance crop and pest resilience, offering high specificity and ease of application. Additionally, nano-pesticide formulations allow controlled chemical release, optimizing pesticide usage through precise dosages administered at targeted intervals. In response to climate change, several climate-resilient pest management technologies have emerged, including remote sensing, information and communication technology (ICT)-based methods, and precision farming practices. These methods leverage sensors, mobile applications, and unmanned aerial vehicles (UAVs) for efficient pest monitoring and pesticide application. Collectively, these advancements emphasize reduced reliance on synthetic chemicals, promoting greener, residue-free pest control and supporting the cultivation of healthy, sustainable crops. This review comprehensively discusses these trends, focusing on sustainable, eco-friendly pest management approaches.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.