散发性疾病队列中种系变异呼叫工具的性能比较。

IF 2.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qiaofeng Song, Jinglan Zhai, Changshui Chen, Haibo Li, Aihua Cao, Bo Yuan, Yu An
{"title":"散发性疾病队列中种系变异呼叫工具的性能比较。","authors":"Qiaofeng Song, Jinglan Zhai, Changshui Chen, Haibo Li, Aihua Cao, Bo Yuan, Yu An","doi":"10.1007/s00438-025-02292-0","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate variant calling is essential for next-generation sequencing (NGS)-based diagnosis of rare diseases, yet most benchmarking studies have focused on standard cell lines or trio-based samples, with limited relevance to sporadic cases. Here, we systematically compared the performance of DeepVariant and GATK HaplotypeCaller in two Chinese cohorts of patients with sporadic epilepsy (EP) and autism spectrum disorder (ASD). DeepVariant exhibited higher precision and sensitivity in detecting single nucleotide variants (SNVs), while GATK showed a distinct advantage in identifying rare variants, which are often key to understanding the genetic basis of rare diseases. Comparative analyses based on disease-related gene panels further highlighted differences in the identification of potentially deleterious variants. These findings reveal important trade-offs between variant callers and emphasize the need to tailor variant-calling strategies to specific research and clinical contexts. Our study provides practical vision for optimizing germline variant detection pipelines in sporadic neurodevelopmental disorders, offering broader insights for precision medicine applications.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"90"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance comparison of germline variant calling tools in sporadic disease cohorts.\",\"authors\":\"Qiaofeng Song, Jinglan Zhai, Changshui Chen, Haibo Li, Aihua Cao, Bo Yuan, Yu An\",\"doi\":\"10.1007/s00438-025-02292-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate variant calling is essential for next-generation sequencing (NGS)-based diagnosis of rare diseases, yet most benchmarking studies have focused on standard cell lines or trio-based samples, with limited relevance to sporadic cases. Here, we systematically compared the performance of DeepVariant and GATK HaplotypeCaller in two Chinese cohorts of patients with sporadic epilepsy (EP) and autism spectrum disorder (ASD). DeepVariant exhibited higher precision and sensitivity in detecting single nucleotide variants (SNVs), while GATK showed a distinct advantage in identifying rare variants, which are often key to understanding the genetic basis of rare diseases. Comparative analyses based on disease-related gene panels further highlighted differences in the identification of potentially deleterious variants. These findings reveal important trade-offs between variant callers and emphasize the need to tailor variant-calling strategies to specific research and clinical contexts. Our study provides practical vision for optimizing germline variant detection pipelines in sporadic neurodevelopmental disorders, offering broader insights for precision medicine applications.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":\"300 1\",\"pages\":\"90\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-025-02292-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02292-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

准确的变异识别对于基于下一代测序(NGS)的罕见疾病诊断至关重要,然而大多数基准研究都集中在标准细胞系或基于三组的样本上,与零星病例的相关性有限。​DeepVariant在检测单核苷酸变异(snv)方面表现出更高的精度和灵敏度,而GATK在识别罕见变异方面表现出明显的优势,而罕见变异通常是了解罕见疾病遗传基础的关键。基于疾病相关基因面板的比较分析进一步强调了在识别潜在有害变异方面的差异。这些发现揭示了变异召唤者之间的重要权衡,并强调需要根据具体的研究和临床情况量身定制变异召唤策略。我们的研究为优化散发性神经发育障碍的种系变异检测管道提供了实践愿景,为精准医学应用提供了更广泛的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance comparison of germline variant calling tools in sporadic disease cohorts.

Accurate variant calling is essential for next-generation sequencing (NGS)-based diagnosis of rare diseases, yet most benchmarking studies have focused on standard cell lines or trio-based samples, with limited relevance to sporadic cases. Here, we systematically compared the performance of DeepVariant and GATK HaplotypeCaller in two Chinese cohorts of patients with sporadic epilepsy (EP) and autism spectrum disorder (ASD). DeepVariant exhibited higher precision and sensitivity in detecting single nucleotide variants (SNVs), while GATK showed a distinct advantage in identifying rare variants, which are often key to understanding the genetic basis of rare diseases. Comparative analyses based on disease-related gene panels further highlighted differences in the identification of potentially deleterious variants. These findings reveal important trade-offs between variant callers and emphasize the need to tailor variant-calling strategies to specific research and clinical contexts. Our study provides practical vision for optimizing germline variant detection pipelines in sporadic neurodevelopmental disorders, offering broader insights for precision medicine applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信