导电水凝胶电极用于头皮脑电图监测。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zichong Ji, Leqi Li, Meiqiong Zheng, Xinyuan Ye, Wenqing Yan, Zonglei Wang, Yi Liu, Yuli Wang, Yujie Zhang, Pengcheng Zhou, Jiawei Yang, Mingzhe Wang, Shihong Lin, Hossam Haick, Yan Wang
{"title":"导电水凝胶电极用于头皮脑电图监测。","authors":"Zichong Ji, Leqi Li, Meiqiong Zheng, Xinyuan Ye, Wenqing Yan, Zonglei Wang, Yi Liu, Yuli Wang, Yujie Zhang, Pengcheng Zhou, Jiawei Yang, Mingzhe Wang, Shihong Lin, Hossam Haick, Yan Wang","doi":"10.1002/smtd.202501242","DOIUrl":null,"url":null,"abstract":"<p><p>Scalp electroencephalography (EEG) serves as a pivotal technology for the noninvasive monitoring of brain functional activity, diagnosing neurological disorders, and assessing cognitive states. However, inherent compatibility barriers between traditional rigid electrodes and the hairy scalp interface significantly compromise signal quality, long-term monitoring comfort, and user compliance. This review examines conductive hydrogel electrodes' pivotal role in advancing scalp EEG, particularly their unique capacity to overcome hair-interface barriers. The superiority of scalp EEG is first established over forehead/ear EEG for capturing diverse neural signals and defining core requirements for hair-compatible interfaces: scalp conformability, electrical conductivity, low contact impedance, and interfacial stability. Conductive hydrogel electrode applications are then detailed in alpha wave detection, sleep monitoring, event-related potential studies, and brain-computer interfaces. Finally, persisting challenges and future opportunities are discussed.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01242"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductive Hydrogel-Enabled Electrode for Scalp Electroencephalography Monitoring.\",\"authors\":\"Zichong Ji, Leqi Li, Meiqiong Zheng, Xinyuan Ye, Wenqing Yan, Zonglei Wang, Yi Liu, Yuli Wang, Yujie Zhang, Pengcheng Zhou, Jiawei Yang, Mingzhe Wang, Shihong Lin, Hossam Haick, Yan Wang\",\"doi\":\"10.1002/smtd.202501242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scalp electroencephalography (EEG) serves as a pivotal technology for the noninvasive monitoring of brain functional activity, diagnosing neurological disorders, and assessing cognitive states. However, inherent compatibility barriers between traditional rigid electrodes and the hairy scalp interface significantly compromise signal quality, long-term monitoring comfort, and user compliance. This review examines conductive hydrogel electrodes' pivotal role in advancing scalp EEG, particularly their unique capacity to overcome hair-interface barriers. The superiority of scalp EEG is first established over forehead/ear EEG for capturing diverse neural signals and defining core requirements for hair-compatible interfaces: scalp conformability, electrical conductivity, low contact impedance, and interfacial stability. Conductive hydrogel electrode applications are then detailed in alpha wave detection, sleep monitoring, event-related potential studies, and brain-computer interfaces. Finally, persisting challenges and future opportunities are discussed.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01242\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501242\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501242","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

头皮脑电图(EEG)是无创监测脑功能活动、诊断神经系统疾病和评估认知状态的关键技术。然而,传统刚性电极和毛发头皮界面之间固有的兼容性障碍显著影响了信号质量、长期监测舒适性和用户依从性。本文综述了导电水凝胶电极在推进头皮脑电图中的关键作用,特别是其克服毛发界面障碍的独特能力。首先确立了头皮脑电图相对于前额/耳朵脑电图在捕获多种神经信号方面的优势,并定义了头发兼容接口的核心要求:头皮相容性、电导率、低接触阻抗和接口稳定性。然后详细介绍了导电水凝胶电极在α波检测、睡眠监测、事件相关电位研究和脑机接口中的应用。最后,讨论了持续的挑战和未来的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conductive Hydrogel-Enabled Electrode for Scalp Electroencephalography Monitoring.

Scalp electroencephalography (EEG) serves as a pivotal technology for the noninvasive monitoring of brain functional activity, diagnosing neurological disorders, and assessing cognitive states. However, inherent compatibility barriers between traditional rigid electrodes and the hairy scalp interface significantly compromise signal quality, long-term monitoring comfort, and user compliance. This review examines conductive hydrogel electrodes' pivotal role in advancing scalp EEG, particularly their unique capacity to overcome hair-interface barriers. The superiority of scalp EEG is first established over forehead/ear EEG for capturing diverse neural signals and defining core requirements for hair-compatible interfaces: scalp conformability, electrical conductivity, low contact impedance, and interfacial stability. Conductive hydrogel electrode applications are then detailed in alpha wave detection, sleep monitoring, event-related potential studies, and brain-computer interfaces. Finally, persisting challenges and future opportunities are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信