Hee-Joo Choi, Soo Young Park, Minsik Song, Jinhyuk Chang, YoonSik Kim, Hosub Park, Chihwan David Cha, Sohyeon Yang, Nam Hun Heo, Min Ji Song, Da Sol Kim, Hayeon Kim, Minuk Kim, Jae Eun Park, Yesung Lee, EunChae Ji, Heekyoung Chung, Ilecheon Jeong, Mineui Hong, Jin-Wu Nam, Mee-Hye Oh, Ji-Hye Lee, Jinwoo Seol, Hee-Young Won, Hyun-Woo Song, Jaewon Eom, Do Young Lee, Han Suk Ryu, Si-Hyong Jang, Jeong-Yeon Lee
{"title":"利用数字实时PCR技术改进HER2诊断,超快速、精确地预测乳腺癌患者的抗HER2治疗反应","authors":"Hee-Joo Choi, Soo Young Park, Minsik Song, Jinhyuk Chang, YoonSik Kim, Hosub Park, Chihwan David Cha, Sohyeon Yang, Nam Hun Heo, Min Ji Song, Da Sol Kim, Hayeon Kim, Minuk Kim, Jae Eun Park, Yesung Lee, EunChae Ji, Heekyoung Chung, Ilecheon Jeong, Mineui Hong, Jin-Wu Nam, Mee-Hye Oh, Ji-Hye Lee, Jinwoo Seol, Hee-Young Won, Hyun-Woo Song, Jaewon Eom, Do Young Lee, Han Suk Ryu, Si-Hyong Jang, Jeong-Yeon Lee","doi":"10.1002/smtd.202500599","DOIUrl":null,"url":null,"abstract":"<p><p>While human epidermal growth factor receptor (HER2) has emerged as a tumor-agnostic biomarker, standard HER2 testing for anti-HER2 therapies using immunohistochemistry (IHC) and in situ hybridization (ISH) assays remains subjective, time-consuming, and often inaccurate. To address these limitations, an ultrafast and precise HER2 testing method is developed using Lab-On-An-Array (LOAA) digital real-time PCR (drPCR), a fully automated digital PCR enabling real-time absolute quantification. A multicenter study involving four independent breast cancer cohorts cross-validates the high diagnostic accuracy of drPCR-based HER2 assessment. Comparative analyses with artificial intelligence algorithms, next-generation sequencing, and droplet digital PCR demonstrate that drPCR is faster, simpler, and more accurate than conventional assays for assessing HER2 status, while IHC/ISH frequently yields false positives. Importantly, in patients initially diagnosed as HER2-positive and treated with neoadjuvant anti-HER2 therapy, the HER2 drPCR(+)/IHC-ISH(+) group achieves high pathological complete response rates, while HER2 drPCR(-)/IHC-ISH(+) cases exhibit poor treatment responses, highlighting the superior predictive accuracy of drPCR for anti-HER2 therapy response. Additionally, drPCR identifies patients with chromosome 17 centromere abnormalities, HER2-zero/ERBB2 hemizygous deletion, and ERBB2 hyperamplification who respond favorably to anti-HER2 therapy. Collectively, these findings establish drPCR as a clinically feasible, standardized, and ultrafast HER2 testing method for improved prediction of anti-HER2 therapy response in patients with cancer.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e00599"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving HER2 Diagnostics with Digital Real-Time PCR for Ultrafast, Precise Prediction of Anti-HER2 Therapy Response in Patients with Breast Cancer.\",\"authors\":\"Hee-Joo Choi, Soo Young Park, Minsik Song, Jinhyuk Chang, YoonSik Kim, Hosub Park, Chihwan David Cha, Sohyeon Yang, Nam Hun Heo, Min Ji Song, Da Sol Kim, Hayeon Kim, Minuk Kim, Jae Eun Park, Yesung Lee, EunChae Ji, Heekyoung Chung, Ilecheon Jeong, Mineui Hong, Jin-Wu Nam, Mee-Hye Oh, Ji-Hye Lee, Jinwoo Seol, Hee-Young Won, Hyun-Woo Song, Jaewon Eom, Do Young Lee, Han Suk Ryu, Si-Hyong Jang, Jeong-Yeon Lee\",\"doi\":\"10.1002/smtd.202500599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While human epidermal growth factor receptor (HER2) has emerged as a tumor-agnostic biomarker, standard HER2 testing for anti-HER2 therapies using immunohistochemistry (IHC) and in situ hybridization (ISH) assays remains subjective, time-consuming, and often inaccurate. To address these limitations, an ultrafast and precise HER2 testing method is developed using Lab-On-An-Array (LOAA) digital real-time PCR (drPCR), a fully automated digital PCR enabling real-time absolute quantification. A multicenter study involving four independent breast cancer cohorts cross-validates the high diagnostic accuracy of drPCR-based HER2 assessment. Comparative analyses with artificial intelligence algorithms, next-generation sequencing, and droplet digital PCR demonstrate that drPCR is faster, simpler, and more accurate than conventional assays for assessing HER2 status, while IHC/ISH frequently yields false positives. Importantly, in patients initially diagnosed as HER2-positive and treated with neoadjuvant anti-HER2 therapy, the HER2 drPCR(+)/IHC-ISH(+) group achieves high pathological complete response rates, while HER2 drPCR(-)/IHC-ISH(+) cases exhibit poor treatment responses, highlighting the superior predictive accuracy of drPCR for anti-HER2 therapy response. Additionally, drPCR identifies patients with chromosome 17 centromere abnormalities, HER2-zero/ERBB2 hemizygous deletion, and ERBB2 hyperamplification who respond favorably to anti-HER2 therapy. Collectively, these findings establish drPCR as a clinically feasible, standardized, and ultrafast HER2 testing method for improved prediction of anti-HER2 therapy response in patients with cancer.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e00599\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500599\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500599","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Improving HER2 Diagnostics with Digital Real-Time PCR for Ultrafast, Precise Prediction of Anti-HER2 Therapy Response in Patients with Breast Cancer.
While human epidermal growth factor receptor (HER2) has emerged as a tumor-agnostic biomarker, standard HER2 testing for anti-HER2 therapies using immunohistochemistry (IHC) and in situ hybridization (ISH) assays remains subjective, time-consuming, and often inaccurate. To address these limitations, an ultrafast and precise HER2 testing method is developed using Lab-On-An-Array (LOAA) digital real-time PCR (drPCR), a fully automated digital PCR enabling real-time absolute quantification. A multicenter study involving four independent breast cancer cohorts cross-validates the high diagnostic accuracy of drPCR-based HER2 assessment. Comparative analyses with artificial intelligence algorithms, next-generation sequencing, and droplet digital PCR demonstrate that drPCR is faster, simpler, and more accurate than conventional assays for assessing HER2 status, while IHC/ISH frequently yields false positives. Importantly, in patients initially diagnosed as HER2-positive and treated with neoadjuvant anti-HER2 therapy, the HER2 drPCR(+)/IHC-ISH(+) group achieves high pathological complete response rates, while HER2 drPCR(-)/IHC-ISH(+) cases exhibit poor treatment responses, highlighting the superior predictive accuracy of drPCR for anti-HER2 therapy response. Additionally, drPCR identifies patients with chromosome 17 centromere abnormalities, HER2-zero/ERBB2 hemizygous deletion, and ERBB2 hyperamplification who respond favorably to anti-HER2 therapy. Collectively, these findings establish drPCR as a clinically feasible, standardized, and ultrafast HER2 testing method for improved prediction of anti-HER2 therapy response in patients with cancer.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.