服务器存储模块双冷凝段超薄平板热管热性能实验研究

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Xuan Li, Huimin Xiong, Chaowei Chen, Gongming Xin, Jiaqian Li, Yan Chen
{"title":"服务器存储模块双冷凝段超薄平板热管热性能实验研究","authors":"Xuan Li,&nbsp;Huimin Xiong,&nbsp;Chaowei Chen,&nbsp;Gongming Xin,&nbsp;Jiaqian Li,&nbsp;Yan Chen","doi":"10.1016/j.ijthermalsci.2025.110278","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the thermal management of server memory modules. A series of UFHPs (ultra-thin flat heat pipes) using SF33 as the working fluid, with varying filling amounts, bending angles, and internal groove structures, were fabricated. The experiment investigated the heat transfer performance of UFHPs by analyzing the optimal filling amounts corresponding to different bending angles and the impact of internal groove structures on heat transfer. The experimental results indicate that a low filling amount stabilizes more quickly under the same heating power but requires higher heating power for full start-up. Bending the heat pipes enhances heat transfer performance, with an optimal filling amount existing for different power levels and bending angles. Among the three heat pipe configurations, the NCP type groove exhibits the best capillary-driven liquid flow characteristics, while the RCP type heat pipe demonstrates the best heat transfer performance. Compared to current memory module cooling methods, the RCP-60 type UFHP with dual condensation sections offers superior thermal performance. Under conditions of a 40 °C cooling water temperature and a 16 W heating power, it maintains the memory module temperature at approximately 48 °C. Furthermore, this UFHP exhibits a remarkably low thermal resistance of only 0.33 K/W and an exceptionally high effective thermal conductivity of 15,000 W/(m⋅K). This provides an effective design approach to ensure excellent thermal management for server memory modules and other low-power electronic devices.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"220 ","pages":"Article 110278"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on thermal performance of ultra-thin flat heat pipe with double condensation sections for server memory modules\",\"authors\":\"Xuan Li,&nbsp;Huimin Xiong,&nbsp;Chaowei Chen,&nbsp;Gongming Xin,&nbsp;Jiaqian Li,&nbsp;Yan Chen\",\"doi\":\"10.1016/j.ijthermalsci.2025.110278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the thermal management of server memory modules. A series of UFHPs (ultra-thin flat heat pipes) using SF33 as the working fluid, with varying filling amounts, bending angles, and internal groove structures, were fabricated. The experiment investigated the heat transfer performance of UFHPs by analyzing the optimal filling amounts corresponding to different bending angles and the impact of internal groove structures on heat transfer. The experimental results indicate that a low filling amount stabilizes more quickly under the same heating power but requires higher heating power for full start-up. Bending the heat pipes enhances heat transfer performance, with an optimal filling amount existing for different power levels and bending angles. Among the three heat pipe configurations, the NCP type groove exhibits the best capillary-driven liquid flow characteristics, while the RCP type heat pipe demonstrates the best heat transfer performance. Compared to current memory module cooling methods, the RCP-60 type UFHP with dual condensation sections offers superior thermal performance. Under conditions of a 40 °C cooling water temperature and a 16 W heating power, it maintains the memory module temperature at approximately 48 °C. Furthermore, this UFHP exhibits a remarkably low thermal resistance of only 0.33 K/W and an exceptionally high effective thermal conductivity of 15,000 W/(m⋅K). This provides an effective design approach to ensure excellent thermal management for server memory modules and other low-power electronic devices.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"220 \",\"pages\":\"Article 110278\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925006015\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925006015","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究服务器内存模块的热管理。制备了一系列以SF33为工质,具有不同填充量、不同弯曲角度和不同内槽结构的超薄扁平热管。通过分析不同弯曲角度下的最佳填充量以及内槽结构对换热的影响,研究了超大功率热泵的换热性能。实验结果表明,在相同的加热功率下,低填充量稳定更快,但完全启动需要更高的加热功率。弯曲热管可以提高热管的传热性能,不同的功率水平和弯曲角度都有最佳的填充量。在三种热管构型中,NCP型槽型具有最佳的毛细管驱动液体流动特性,而RCP型热管具有最佳的传热性能。与当前的存储模块冷却方法相比,RCP-60型UFHP具有双冷凝部分,具有优越的散热性能。在冷却水温度为40℃,加热功率为16w的条件下,内存温度维持在48℃左右。此外,该UFHP的热阻非常低,仅为0.33 K/W,有效导热系数高达15,000 W/(m·K)。这为确保服务器内存模块和其他低功耗电子设备的出色热管理提供了有效的设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on thermal performance of ultra-thin flat heat pipe with double condensation sections for server memory modules
This paper focuses on the thermal management of server memory modules. A series of UFHPs (ultra-thin flat heat pipes) using SF33 as the working fluid, with varying filling amounts, bending angles, and internal groove structures, were fabricated. The experiment investigated the heat transfer performance of UFHPs by analyzing the optimal filling amounts corresponding to different bending angles and the impact of internal groove structures on heat transfer. The experimental results indicate that a low filling amount stabilizes more quickly under the same heating power but requires higher heating power for full start-up. Bending the heat pipes enhances heat transfer performance, with an optimal filling amount existing for different power levels and bending angles. Among the three heat pipe configurations, the NCP type groove exhibits the best capillary-driven liquid flow characteristics, while the RCP type heat pipe demonstrates the best heat transfer performance. Compared to current memory module cooling methods, the RCP-60 type UFHP with dual condensation sections offers superior thermal performance. Under conditions of a 40 °C cooling water temperature and a 16 W heating power, it maintains the memory module temperature at approximately 48 °C. Furthermore, this UFHP exhibits a remarkably low thermal resistance of only 0.33 K/W and an exceptionally high effective thermal conductivity of 15,000 W/(m⋅K). This provides an effective design approach to ensure excellent thermal management for server memory modules and other low-power electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信