基于SVD的大尺度模型中几何不可知变分自编码器的集成

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Benet Eiximeno , Arnau Miró , J. Nathan Kutz , Ivette Rodriguez , Oriol Lehmkuhl
{"title":"基于SVD的大尺度模型中几何不可知变分自编码器的集成","authors":"Benet Eiximeno ,&nbsp;Arnau Miró ,&nbsp;J. Nathan Kutz ,&nbsp;Ivette Rodriguez ,&nbsp;Oriol Lehmkuhl","doi":"10.1016/j.compfluid.2025.106797","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript introduces GAVI (<strong>G</strong>eometry <strong>A</strong>gnostic <strong>V</strong>ariational-autoencoder <strong>I</strong>ntegration), a scalable technique for model order reduction of terabyte-level state spaces. Such methodology is agnostic to the spatial location of the data points, hence, it can handle any complex geometry regardless of the grid type in which it is represented. The dimensionality reduction of GAVI is performed on two separate steps. First, a parallel QR factorization is applied to the snapshot matrix to decompose, then a variational autoencoder learns a latent representation of the reduced R matrix. The final step can be done at laptop level regardless of the size of the original data. The methodology is used to compress the streamwise velocity component of the flow around a circular cylinder at <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>=</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>D</mi><mo>/</mo><mi>ν</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, the pressure coefficient of the flow around the Windsor body at <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>=</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>L</mi><mo>/</mo><mi>ν</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> and the streamwise velocity of the realistic urban flow in the Zona Universitària neighborhood located in Barcelona. The latter example is the most demanding one as the 1032 snapshots, which are represented on an unstructured grid of 335 million points, have a total size of 2.05 Tb. GAVI can compress the full dataset into 6 latent vectors that recover up to the 95.29% of the energy.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"302 ","pages":"Article 106797"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the integration of geometry agnostic variational-autoencoders into large-scale SVD based models\",\"authors\":\"Benet Eiximeno ,&nbsp;Arnau Miró ,&nbsp;J. Nathan Kutz ,&nbsp;Ivette Rodriguez ,&nbsp;Oriol Lehmkuhl\",\"doi\":\"10.1016/j.compfluid.2025.106797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript introduces GAVI (<strong>G</strong>eometry <strong>A</strong>gnostic <strong>V</strong>ariational-autoencoder <strong>I</strong>ntegration), a scalable technique for model order reduction of terabyte-level state spaces. Such methodology is agnostic to the spatial location of the data points, hence, it can handle any complex geometry regardless of the grid type in which it is represented. The dimensionality reduction of GAVI is performed on two separate steps. First, a parallel QR factorization is applied to the snapshot matrix to decompose, then a variational autoencoder learns a latent representation of the reduced R matrix. The final step can be done at laptop level regardless of the size of the original data. The methodology is used to compress the streamwise velocity component of the flow around a circular cylinder at <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>=</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>D</mi><mo>/</mo><mi>ν</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, the pressure coefficient of the flow around the Windsor body at <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>=</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>L</mi><mo>/</mo><mi>ν</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> and the streamwise velocity of the realistic urban flow in the Zona Universitària neighborhood located in Barcelona. The latter example is the most demanding one as the 1032 snapshots, which are represented on an unstructured grid of 335 million points, have a total size of 2.05 Tb. GAVI can compress the full dataset into 6 latent vectors that recover up to the 95.29% of the energy.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"302 \",\"pages\":\"Article 106797\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025002579\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025002579","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了GAVI(几何不可知论变分自编码器集成),这是一种用于太字节级状态空间模型降阶的可扩展技术。这种方法与数据点的空间位置无关,因此,它可以处理任何复杂的几何形状,而不管表示它的网格类型如何。全球免疫联盟的降维分两个步骤进行。首先,对快照矩阵进行并行QR分解进行分解,然后变分自编码器学习简化后的R矩阵的潜在表示。最后一步可以在笔记本电脑级别完成,而不管原始数据的大小。利用该方法压缩了在ReD=U∞D/ν=104时绕圆柱体流动的顺流速度分量,在ReL=U∞L/ν=2.9×106时绕温莎体流动的压力系数,以及位于巴塞罗那Zona Universitària社区的现实城市流动的顺流速度。后一个例子是最苛刻的一个,因为1032个快照,在一个3.35亿个点的非结构化网格上表示,总大小为2.05 Tb。GAVI可以将整个数据集压缩成6个潜在向量,其能量恢复率高达95.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the integration of geometry agnostic variational-autoencoders into large-scale SVD based models
This manuscript introduces GAVI (Geometry Agnostic Variational-autoencoder Integration), a scalable technique for model order reduction of terabyte-level state spaces. Such methodology is agnostic to the spatial location of the data points, hence, it can handle any complex geometry regardless of the grid type in which it is represented. The dimensionality reduction of GAVI is performed on two separate steps. First, a parallel QR factorization is applied to the snapshot matrix to decompose, then a variational autoencoder learns a latent representation of the reduced R matrix. The final step can be done at laptop level regardless of the size of the original data. The methodology is used to compress the streamwise velocity component of the flow around a circular cylinder at ReD=UD/ν=104, the pressure coefficient of the flow around the Windsor body at ReL=UL/ν=2.9×106 and the streamwise velocity of the realistic urban flow in the Zona Universitària neighborhood located in Barcelona. The latter example is the most demanding one as the 1032 snapshots, which are represented on an unstructured grid of 335 million points, have a total size of 2.05 Tb. GAVI can compress the full dataset into 6 latent vectors that recover up to the 95.29% of the energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信