等离子体梯度工程聚硅氧烷涂层:交联增强的原子氧抗性和航天器应用的灵活性

IF 7.3 2区 材料科学 Q1 CHEMISTRY, APPLIED
Yi Li, Zhonghua Li, Yanchun He, Shengzhu Cao, Dongfeng Ma, Gong Cheng, Hu Wang, Lin Li, Miao Yang, Lanxi Wang, Lu Yuan, Min Xu
{"title":"等离子体梯度工程聚硅氧烷涂层:交联增强的原子氧抗性和航天器应用的灵活性","authors":"Yi Li,&nbsp;Zhonghua Li,&nbsp;Yanchun He,&nbsp;Shengzhu Cao,&nbsp;Dongfeng Ma,&nbsp;Gong Cheng,&nbsp;Hu Wang,&nbsp;Lin Li,&nbsp;Miao Yang,&nbsp;Lanxi Wang,&nbsp;Lu Yuan,&nbsp;Min Xu","doi":"10.1016/j.porgcoat.2025.109631","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issue of atomic oxygen (AO) erosion-induced material degradation in flexible polyimide (PI) substrates used for low Earth orbit (LEO) spacecraft, this study proposes a protective coating design strategy based on oxygen-doped polysiloxane via plasma-enhanced chemical vapor deposition (PECVD). By adjusting the flow ratio of hexamethyldisiloxane (HMDSO) to oxygen (O<sub>2</sub>), polysiloxane coatings with varying oxygen doping levels were prepared, and the regulatory mechanisms of oxygen content on the chemical structure evolution, mechanical properties, and AO resistance performance were systematically investigated. Experimental results revealed that low-oxygen (10 % O<sub>2</sub>) coatings exhibited a methyl-rich linear siloxane structure, offering high flexibility but weak AO resistance. Under high-oxygen (50 % O<sub>2</sub>) conditions, complete oxidation of Si<img>CH<sub>3</sub> groups formed a three-dimensional SiO<sub>2</sub> network (Q<sup>4</sup> structure &gt;75 %), achieving optimal AO resistance, but excessive inorganicization led to brittleness and interfacial delamination risks. The 30 % O<sub>2</sub>-doped coating balanced the organic-inorganic hybrid structure (Q<sup>3/</sup>Q<sup>4</sup> ratios of 58 %/21 %), maintaining moderate flexibility (elastic modulus: 25.4 GPa) while significantly enhancing AO resistance (erosion rate: 3.14 × 10<sup>−26</sup> cm<sup>3</sup>/atom), two orders of magnitude lower than uncoated PI substrates. This work elucidates the plasma-activated oxygen-mediated directional oxidation of Si<img>CH<sub>3</sub> and gradient Si<img>O<img>Si crosslinking mechanisms, providing a theoretical framework for designing functional protective coatings for flexible materials in extreme space environments.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"210 ","pages":"Article 109631"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-gradient engineered polysiloxane coatings: Crosslinking-enhanced atomic oxygen resistance and flexibility for spacecraft applications\",\"authors\":\"Yi Li,&nbsp;Zhonghua Li,&nbsp;Yanchun He,&nbsp;Shengzhu Cao,&nbsp;Dongfeng Ma,&nbsp;Gong Cheng,&nbsp;Hu Wang,&nbsp;Lin Li,&nbsp;Miao Yang,&nbsp;Lanxi Wang,&nbsp;Lu Yuan,&nbsp;Min Xu\",\"doi\":\"10.1016/j.porgcoat.2025.109631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the issue of atomic oxygen (AO) erosion-induced material degradation in flexible polyimide (PI) substrates used for low Earth orbit (LEO) spacecraft, this study proposes a protective coating design strategy based on oxygen-doped polysiloxane via plasma-enhanced chemical vapor deposition (PECVD). By adjusting the flow ratio of hexamethyldisiloxane (HMDSO) to oxygen (O<sub>2</sub>), polysiloxane coatings with varying oxygen doping levels were prepared, and the regulatory mechanisms of oxygen content on the chemical structure evolution, mechanical properties, and AO resistance performance were systematically investigated. Experimental results revealed that low-oxygen (10 % O<sub>2</sub>) coatings exhibited a methyl-rich linear siloxane structure, offering high flexibility but weak AO resistance. Under high-oxygen (50 % O<sub>2</sub>) conditions, complete oxidation of Si<img>CH<sub>3</sub> groups formed a three-dimensional SiO<sub>2</sub> network (Q<sup>4</sup> structure &gt;75 %), achieving optimal AO resistance, but excessive inorganicization led to brittleness and interfacial delamination risks. The 30 % O<sub>2</sub>-doped coating balanced the organic-inorganic hybrid structure (Q<sup>3/</sup>Q<sup>4</sup> ratios of 58 %/21 %), maintaining moderate flexibility (elastic modulus: 25.4 GPa) while significantly enhancing AO resistance (erosion rate: 3.14 × 10<sup>−26</sup> cm<sup>3</sup>/atom), two orders of magnitude lower than uncoated PI substrates. This work elucidates the plasma-activated oxygen-mediated directional oxidation of Si<img>CH<sub>3</sub> and gradient Si<img>O<img>Si crosslinking mechanisms, providing a theoretical framework for designing functional protective coatings for flexible materials in extreme space environments.</div></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":\"210 \",\"pages\":\"Article 109631\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944025005806\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944025005806","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为了解决用于近地轨道航天器的柔性聚酰亚胺(PI)衬底中原子氧(AO)侵蚀引起的材料降解问题,本研究提出了一种基于氧掺杂聚硅氧烷的等离子体增强化学气相沉积(PECVD)保护涂层设计策略。通过调节六甲基二硅氧烷(HMDSO)与氧(O2)的流量比,制备了不同氧掺杂水平的聚硅氧烷涂层,并系统研究了氧含量对聚硅氧烷涂层化学结构演变、力学性能和抗AO性能的调控机制。实验结果表明,低氧(10% O2)涂层呈现出富甲基的线性硅氧烷结构,具有较高的柔韧性,但抗AO能力较弱。在高氧(50% O2)条件下,SiCH3基团完全氧化形成了三维SiO2网络(Q4结构>; 75%),获得了最佳的抗AO性,但过度的无组织导致脆性和界面分层风险。30% o2掺杂的涂层平衡了有机-无机杂化结构(Q3/Q4比率为58% / 21%),保持了适度的柔韧性(弹性模量:25.4 GPa),同时显著提高了抗AO性(侵蚀率:3.14 × 10−26 cm3/原子),比未涂覆的PI衬底低两个数量级。本研究阐明了等离子体活性氧介导的SiCH3定向氧化和SiOSi梯度交联机制,为极端空间环境下柔性材料功能防护涂层的设计提供了理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasma-gradient engineered polysiloxane coatings: Crosslinking-enhanced atomic oxygen resistance and flexibility for spacecraft applications

Plasma-gradient engineered polysiloxane coatings: Crosslinking-enhanced atomic oxygen resistance and flexibility for spacecraft applications
To address the issue of atomic oxygen (AO) erosion-induced material degradation in flexible polyimide (PI) substrates used for low Earth orbit (LEO) spacecraft, this study proposes a protective coating design strategy based on oxygen-doped polysiloxane via plasma-enhanced chemical vapor deposition (PECVD). By adjusting the flow ratio of hexamethyldisiloxane (HMDSO) to oxygen (O2), polysiloxane coatings with varying oxygen doping levels were prepared, and the regulatory mechanisms of oxygen content on the chemical structure evolution, mechanical properties, and AO resistance performance were systematically investigated. Experimental results revealed that low-oxygen (10 % O2) coatings exhibited a methyl-rich linear siloxane structure, offering high flexibility but weak AO resistance. Under high-oxygen (50 % O2) conditions, complete oxidation of SiCH3 groups formed a three-dimensional SiO2 network (Q4 structure >75 %), achieving optimal AO resistance, but excessive inorganicization led to brittleness and interfacial delamination risks. The 30 % O2-doped coating balanced the organic-inorganic hybrid structure (Q3/Q4 ratios of 58 %/21 %), maintaining moderate flexibility (elastic modulus: 25.4 GPa) while significantly enhancing AO resistance (erosion rate: 3.14 × 10−26 cm3/atom), two orders of magnitude lower than uncoated PI substrates. This work elucidates the plasma-activated oxygen-mediated directional oxidation of SiCH3 and gradient SiOSi crosslinking mechanisms, providing a theoretical framework for designing functional protective coatings for flexible materials in extreme space environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Organic Coatings
Progress in Organic Coatings 工程技术-材料科学:膜
CiteScore
11.40
自引率
15.20%
发文量
577
审稿时长
48 days
期刊介绍: The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as: • Chemical, physical and technological properties of organic coatings and related materials • Problems and methods of preparation, manufacture and application of these materials • Performance, testing and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信