基于改进的二维和三维分形蜜獾优化算法的云计算系统任务调度

IF 5.7 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yu-Feng Sun, Si-Wen Zhang, Jie-Sheng Wang, Shi-Hui Zhang, Yu-Cai Wang, Xiao-Fei Sui
{"title":"基于改进的二维和三维分形蜜獾优化算法的云计算系统任务调度","authors":"Yu-Feng Sun,&nbsp;Si-Wen Zhang,&nbsp;Jie-Sheng Wang,&nbsp;Shi-Hui Zhang,&nbsp;Yu-Cai Wang,&nbsp;Xiao-Fei Sui","doi":"10.1016/j.suscom.2025.101201","DOIUrl":null,"url":null,"abstract":"<div><div>Cloud computing task scheduling is not only the foundation for ensuring the efficient operation of the cloud platform, but also an important means of improving service quality and reducing costs. With the continuous development of cloud computing technology, the requirements for intelligent and automated task scheduling are also increasing. To address the demand for more efficient and flexible computations, an enhanced honey badger algorithm (HBA) utilizing two dimensional and three dimensional fractals is introduced. The digging phase of the honey badger's foraging strategy is improved by using the mathematical expressions of two dimensional and three dimensional fractals in rectangular and polar coordinates, which enhances the algorithm's performance while speeding up its convergence. The optimal solution HBACBKS-Z was selected by verification on the benchmark functions. The optimization problem of task scheduling in cloud computing systems is divided into large-scale task scheduling and small-scale task scheduling. Experiments were conducted in these two cases by using HBACBKS-Z and other traditional swarm intelligence optimization algorithms. It has been proved that HBACBKS-Z has significant advantages in terms of total cost, time cost, load cost and price cost, and can effectively solve the task scheduling optimization problem of cloud computing systems of various sizes.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"48 ","pages":"Article 101201"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task scheduling in cloud computing system by improved honey badger optimization algorithm with two dimensional and three dimensional fractals\",\"authors\":\"Yu-Feng Sun,&nbsp;Si-Wen Zhang,&nbsp;Jie-Sheng Wang,&nbsp;Shi-Hui Zhang,&nbsp;Yu-Cai Wang,&nbsp;Xiao-Fei Sui\",\"doi\":\"10.1016/j.suscom.2025.101201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cloud computing task scheduling is not only the foundation for ensuring the efficient operation of the cloud platform, but also an important means of improving service quality and reducing costs. With the continuous development of cloud computing technology, the requirements for intelligent and automated task scheduling are also increasing. To address the demand for more efficient and flexible computations, an enhanced honey badger algorithm (HBA) utilizing two dimensional and three dimensional fractals is introduced. The digging phase of the honey badger's foraging strategy is improved by using the mathematical expressions of two dimensional and three dimensional fractals in rectangular and polar coordinates, which enhances the algorithm's performance while speeding up its convergence. The optimal solution HBACBKS-Z was selected by verification on the benchmark functions. The optimization problem of task scheduling in cloud computing systems is divided into large-scale task scheduling and small-scale task scheduling. Experiments were conducted in these two cases by using HBACBKS-Z and other traditional swarm intelligence optimization algorithms. It has been proved that HBACBKS-Z has significant advantages in terms of total cost, time cost, load cost and price cost, and can effectively solve the task scheduling optimization problem of cloud computing systems of various sizes.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"48 \",\"pages\":\"Article 101201\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925001222\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001222","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

云计算任务调度是保证云平台高效运行的基础,也是提高服务质量、降低成本的重要手段。随着云计算技术的不断发展,对任务调度的智能化、自动化的要求也越来越高。为了满足更高效和灵活的计算需求,介绍了一种利用二维和三维分形的增强型蜜獾算法(HBA)。利用矩形和极坐标下二维和三维分形的数学表达式对蜜獾觅食策略的挖掘阶段进行改进,提高了算法的性能,加快了算法的收敛速度。通过对基准函数的验证,选择了最优解HBACBKS-Z。云计算系统中的任务调度优化问题分为大规模任务调度和小规模任务调度。采用HBACBKS-Z等传统群体智能优化算法对这两种情况进行了实验。实践证明,HBACBKS-Z在总成本、时间成本、负载成本和价格成本方面具有显著优势,能够有效解决各种规模云计算系统的任务调度优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task scheduling in cloud computing system by improved honey badger optimization algorithm with two dimensional and three dimensional fractals
Cloud computing task scheduling is not only the foundation for ensuring the efficient operation of the cloud platform, but also an important means of improving service quality and reducing costs. With the continuous development of cloud computing technology, the requirements for intelligent and automated task scheduling are also increasing. To address the demand for more efficient and flexible computations, an enhanced honey badger algorithm (HBA) utilizing two dimensional and three dimensional fractals is introduced. The digging phase of the honey badger's foraging strategy is improved by using the mathematical expressions of two dimensional and three dimensional fractals in rectangular and polar coordinates, which enhances the algorithm's performance while speeding up its convergence. The optimal solution HBACBKS-Z was selected by verification on the benchmark functions. The optimization problem of task scheduling in cloud computing systems is divided into large-scale task scheduling and small-scale task scheduling. Experiments were conducted in these two cases by using HBACBKS-Z and other traditional swarm intelligence optimization algorithms. It has been proved that HBACBKS-Z has significant advantages in terms of total cost, time cost, load cost and price cost, and can effectively solve the task scheduling optimization problem of cloud computing systems of various sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信