Ahmad Ali , Haris Haider , Sikander Azam , Muhammad Talha , Muhammad Jawad , Imran Shakir
{"title":"利用DFT探索绿色能源应用中对Sc2BeX4 (X = S, Se)的影响","authors":"Ahmad Ali , Haris Haider , Sikander Azam , Muhammad Talha , Muhammad Jawad , Imran Shakir","doi":"10.1016/j.chemphys.2025.112925","DOIUrl":null,"url":null,"abstract":"<div><div>Using density functional theory, the structural, electronic, optical, and thermoelectric properties of Sc₂BeX₄ (X = S, Se) chalcogenides were investigated for energy applications. Both compounds are dynamically and thermodynamically stable with negative formation energies (−2.6 eV for Sc₂BeS₄ and − 2.2 eV for Sc₂BeSe₄). They exhibit direct band gaps: 1.8 eV (S) and 1.2 eV (Se) via TB-mBJ, suggesting strong visible light absorption. Optical parameters reveal high static dielectric constants (9 and 16.5), peak absorption at ∼13.5 eV, and reflectivity under 30 %. Thermoelectric analysis shows p-type behavior with Seebeck coefficients up to 2.5 × 10<sup>−4</sup> V/K and electrical conductivities of 2.45 × 10<sup>18</sup> and 1.91 × 10<sup>18</sup> (Ω m s)<sup>−1</sup> at 300 K. The power factors reach 1.25 × 10<sup>11</sup> W/K<sup>2</sup> m s, and ZT values attain 0.80 at 800 K. Debye temperatures (420 K for S, 360 K for Se) suggest low lattice thermal conductivity. These results designate Sc₂BeX₄ as promising candidates for photovoltaic and thermoelectric applications.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"601 ","pages":"Article 112925"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring chalcogen influence on Sc2BeX4 (X = S, Se) for green energy applications using DFT\",\"authors\":\"Ahmad Ali , Haris Haider , Sikander Azam , Muhammad Talha , Muhammad Jawad , Imran Shakir\",\"doi\":\"10.1016/j.chemphys.2025.112925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using density functional theory, the structural, electronic, optical, and thermoelectric properties of Sc₂BeX₄ (X = S, Se) chalcogenides were investigated for energy applications. Both compounds are dynamically and thermodynamically stable with negative formation energies (−2.6 eV for Sc₂BeS₄ and − 2.2 eV for Sc₂BeSe₄). They exhibit direct band gaps: 1.8 eV (S) and 1.2 eV (Se) via TB-mBJ, suggesting strong visible light absorption. Optical parameters reveal high static dielectric constants (9 and 16.5), peak absorption at ∼13.5 eV, and reflectivity under 30 %. Thermoelectric analysis shows p-type behavior with Seebeck coefficients up to 2.5 × 10<sup>−4</sup> V/K and electrical conductivities of 2.45 × 10<sup>18</sup> and 1.91 × 10<sup>18</sup> (Ω m s)<sup>−1</sup> at 300 K. The power factors reach 1.25 × 10<sup>11</sup> W/K<sup>2</sup> m s, and ZT values attain 0.80 at 800 K. Debye temperatures (420 K for S, 360 K for Se) suggest low lattice thermal conductivity. These results designate Sc₂BeX₄ as promising candidates for photovoltaic and thermoelectric applications.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"601 \",\"pages\":\"Article 112925\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030101042500326X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030101042500326X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用密度泛函理论,研究了Sc₂BeX₄(X = S, Se)硫系化合物的结构、电子、光学和热电性质。这两种化合物都是动态和热力学稳定的,具有负的生成能(Sc₂BeS₄为- 2.6 eV, Sc₂BeSe₄为- 2.2 eV)。它们表现出直接带隙:1.8 eV (S)和1.2 eV (Se)通过TB-mBJ,表明强可见光吸收。光学参数显示高静态介电常数(9和16.5),峰值吸收在~ 13.5 eV,反射率在30%以下。热电分析显示p型行为,塞贝克系数高达2.5 × 10−4 V/K,电导率为2.45 × 1018和1.91 × 1018 (Ω m s)−1在300 K。功率因数达到1.25 × 1011 W/K2 m s, 800k时ZT值达到0.80。德拜温度(S为420 K, Se为360 K)表明晶格导热系数较低。这些结果表明Sc₂BeX₄是光伏和热电应用的有希望的候选者。
Exploring chalcogen influence on Sc2BeX4 (X = S, Se) for green energy applications using DFT
Using density functional theory, the structural, electronic, optical, and thermoelectric properties of Sc₂BeX₄ (X = S, Se) chalcogenides were investigated for energy applications. Both compounds are dynamically and thermodynamically stable with negative formation energies (−2.6 eV for Sc₂BeS₄ and − 2.2 eV for Sc₂BeSe₄). They exhibit direct band gaps: 1.8 eV (S) and 1.2 eV (Se) via TB-mBJ, suggesting strong visible light absorption. Optical parameters reveal high static dielectric constants (9 and 16.5), peak absorption at ∼13.5 eV, and reflectivity under 30 %. Thermoelectric analysis shows p-type behavior with Seebeck coefficients up to 2.5 × 10−4 V/K and electrical conductivities of 2.45 × 1018 and 1.91 × 1018 (Ω m s)−1 at 300 K. The power factors reach 1.25 × 1011 W/K2 m s, and ZT values attain 0.80 at 800 K. Debye temperatures (420 K for S, 360 K for Se) suggest low lattice thermal conductivity. These results designate Sc₂BeX₄ as promising candidates for photovoltaic and thermoelectric applications.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.