利用全景移动定位和优化的管道分割增强环保部建设进度跟踪

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Wei Wei , Yujie Lu , Ruihan Bai , Lijian Zhong , Yufan Chen , Yijun Lin , Jack C.P. Cheng
{"title":"利用全景移动定位和优化的管道分割增强环保部建设进度跟踪","authors":"Wei Wei ,&nbsp;Yujie Lu ,&nbsp;Ruihan Bai ,&nbsp;Lijian Zhong ,&nbsp;Yufan Chen ,&nbsp;Yijun Lin ,&nbsp;Jack C.P. Cheng","doi":"10.1016/j.autcon.2025.106487","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient progress management is pivotal for the successful delivery of MEP construction projects. While non-intrusive methods, such as image recognition, hold promise in enhancing progress management efficiency, several challenges in MEP scenarios, particularly irregular and sparse features, may constrain the progress recognition accuracy. This paper proposes a framework for automated MEP construction progress tracking, which integrates panoramic mobile positioning, instance segmentation, and Unreal Engine to compare virtual (as-planned) and real (as-built) MEP construction scenes. Moreover, quantitative progress can be estimated by identifying and mapping unfinished construction components. Remarkably, dynamic snake convolution is introduced to enhance the component segmentation accuracy, specifically for irregular and sparse features. The framework is successfully applied to an MEP construction project in China, achieving commendable component segmentation (mAP<sub>50</sub> = 85 %) and progress recognition accuracy. This paper provides theoretical references for vision-based MEP construction progress tracking, offering practical insights for intelligent construction inspection in continuous spaces.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"180 ","pages":"Article 106487"},"PeriodicalIF":11.5000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced MEP construction progress tracking using panoramic mobile positioning and optimized pipeline segmentation\",\"authors\":\"Wei Wei ,&nbsp;Yujie Lu ,&nbsp;Ruihan Bai ,&nbsp;Lijian Zhong ,&nbsp;Yufan Chen ,&nbsp;Yijun Lin ,&nbsp;Jack C.P. Cheng\",\"doi\":\"10.1016/j.autcon.2025.106487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient progress management is pivotal for the successful delivery of MEP construction projects. While non-intrusive methods, such as image recognition, hold promise in enhancing progress management efficiency, several challenges in MEP scenarios, particularly irregular and sparse features, may constrain the progress recognition accuracy. This paper proposes a framework for automated MEP construction progress tracking, which integrates panoramic mobile positioning, instance segmentation, and Unreal Engine to compare virtual (as-planned) and real (as-built) MEP construction scenes. Moreover, quantitative progress can be estimated by identifying and mapping unfinished construction components. Remarkably, dynamic snake convolution is introduced to enhance the component segmentation accuracy, specifically for irregular and sparse features. The framework is successfully applied to an MEP construction project in China, achieving commendable component segmentation (mAP<sub>50</sub> = 85 %) and progress recognition accuracy. This paper provides theoretical references for vision-based MEP construction progress tracking, offering practical insights for intelligent construction inspection in continuous spaces.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"180 \",\"pages\":\"Article 106487\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525005278\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525005278","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高效的进度管理是环境保护部建设项目成功交付的关键。虽然非侵入式方法(如图像识别)有望提高进度管理效率,但MEP场景中的一些挑战,特别是不规则和稀疏特征,可能会限制进度识别的准确性。本文提出了一种机电工程施工进度自动化跟踪框架,该框架集成了全景移动定位、实例分割和虚幻引擎,对虚拟(规划)和真实(建成)机电工程施工场景进行比较。此外,量化的进度可以通过识别和绘制未完成的建筑构件来估计。值得注意的是,引入了动态蛇形卷积来提高组件分割的准确性,特别是对于不规则和稀疏的特征。该框架成功应用于中国某机电工程建设项目,取得了良好的构件分割效果(mAP50 = 85%)和进度识别精度。本文为基于视觉的机电工程施工进度跟踪提供了理论参考,为连续空间的智能施工巡检提供了实践见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced MEP construction progress tracking using panoramic mobile positioning and optimized pipeline segmentation
Efficient progress management is pivotal for the successful delivery of MEP construction projects. While non-intrusive methods, such as image recognition, hold promise in enhancing progress management efficiency, several challenges in MEP scenarios, particularly irregular and sparse features, may constrain the progress recognition accuracy. This paper proposes a framework for automated MEP construction progress tracking, which integrates panoramic mobile positioning, instance segmentation, and Unreal Engine to compare virtual (as-planned) and real (as-built) MEP construction scenes. Moreover, quantitative progress can be estimated by identifying and mapping unfinished construction components. Remarkably, dynamic snake convolution is introduced to enhance the component segmentation accuracy, specifically for irregular and sparse features. The framework is successfully applied to an MEP construction project in China, achieving commendable component segmentation (mAP50 = 85 %) and progress recognition accuracy. This paper provides theoretical references for vision-based MEP construction progress tracking, offering practical insights for intelligent construction inspection in continuous spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信