硒化ZnO纳米棒形成ZnO- znse异质结构,提高了ZnO纳米棒的电化学性能

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Vishnu Mohan Gore, Shrikrishna Dattatraya Sartale
{"title":"硒化ZnO纳米棒形成ZnO- znse异质结构,提高了ZnO纳米棒的电化学性能","authors":"Vishnu Mohan Gore,&nbsp;Shrikrishna Dattatraya Sartale","doi":"10.1016/j.jpcs.2025.113156","DOIUrl":null,"url":null,"abstract":"<div><div>Type-II ZnO-ZnSe heterostructure is formed through surface selenization using an ion-exchange process of SILAR grown ZnO nanorods. This process aims to raise the photoelectrochemical cell (PEC) performance of ZnO nanorods photoanode. The thickness of the ZnSe layer is optimized by varying the Se: NaBH<sub>4</sub> ratios during the ion-exchange process.</div><div>The ZnO-ZnSe heterostructure formation was validated by Raman spectroscopy and X-ray photoelectron spectroscopy studies. Scanning electron microscopy images demonstrated that the ZnSe nanoparticle formation caused the original ZnO nanorod shape to diverge. Photoluminescence confirmed ZnO-ZnSe heterostructure as like UV-vis absorbance `spectroscopy. The I-V characteristics, chronoamperometry (ON/OFF), electrochemical impedance spectroscopy and Mott-Schottky measurements show all-inclusive increment in the PEC performance as a result of surface selenization of the ZnO nanorods photoanode. It is found that the ZnO-ZnSe heterostructure photoanode leverages of extreme photocurrent 0.94mA/cm<sup>2</sup> at 1V vs. Ag/AgCl and a photoconversion efficiency of 0.19 % at 0.89 V vs. RHE. The type-II alignment between ZnO and ZnSe bands result in improved charge collection and a lower recombination rate leading to ZnO-ZnSe heterostructure's enhanced photoelectrochemical performance.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113156"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved PEC performance of SILAR grown ZnO Nanorods by selenization to form ZnO-ZnSe heterostructure\",\"authors\":\"Vishnu Mohan Gore,&nbsp;Shrikrishna Dattatraya Sartale\",\"doi\":\"10.1016/j.jpcs.2025.113156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Type-II ZnO-ZnSe heterostructure is formed through surface selenization using an ion-exchange process of SILAR grown ZnO nanorods. This process aims to raise the photoelectrochemical cell (PEC) performance of ZnO nanorods photoanode. The thickness of the ZnSe layer is optimized by varying the Se: NaBH<sub>4</sub> ratios during the ion-exchange process.</div><div>The ZnO-ZnSe heterostructure formation was validated by Raman spectroscopy and X-ray photoelectron spectroscopy studies. Scanning electron microscopy images demonstrated that the ZnSe nanoparticle formation caused the original ZnO nanorod shape to diverge. Photoluminescence confirmed ZnO-ZnSe heterostructure as like UV-vis absorbance `spectroscopy. The I-V characteristics, chronoamperometry (ON/OFF), electrochemical impedance spectroscopy and Mott-Schottky measurements show all-inclusive increment in the PEC performance as a result of surface selenization of the ZnO nanorods photoanode. It is found that the ZnO-ZnSe heterostructure photoanode leverages of extreme photocurrent 0.94mA/cm<sup>2</sup> at 1V vs. Ag/AgCl and a photoconversion efficiency of 0.19 % at 0.89 V vs. RHE. The type-II alignment between ZnO and ZnSe bands result in improved charge collection and a lower recombination rate leading to ZnO-ZnSe heterostructure's enhanced photoelectrochemical performance.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 113156\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725006092\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725006092","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

ii型ZnO- znse异质结构是通过SILAR生长的ZnO纳米棒的离子交换过程进行表面硒化形成的。该工艺旨在提高ZnO纳米棒光阳极的光电电池(PEC)性能。在离子交换过程中,通过改变Se: NaBH4的比例来优化ZnSe层的厚度。通过拉曼光谱和x射线光电子能谱研究证实了ZnO-ZnSe异质结构的形成。扫描电镜图像显示,ZnSe纳米颗粒的形成导致了原ZnO纳米棒形状的偏离。光致发光证实ZnO-ZnSe异质结构与紫外-可见吸收光谱相似。I-V特性、计时安培(ON/OFF)、电化学阻抗谱和Mott-Schottky测量结果表明,ZnO纳米棒光阳极的表面硒化导致了PEC性能的全面提高。结果表明,ZnO-ZnSe异质结构光阳极在1V时相对于Ag/AgCl具有0.94mA/cm2的极值光电流,在0.89 V时相对于RHE具有0.19%的光电转换效率。ZnO和ZnSe之间的ii型排列改善了电荷收集,降低了复合速率,从而提高了ZnO-ZnSe异质结构的光电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved PEC performance of SILAR grown ZnO Nanorods by selenization to form ZnO-ZnSe heterostructure

Improved PEC performance of SILAR grown ZnO Nanorods by selenization to form ZnO-ZnSe heterostructure
Type-II ZnO-ZnSe heterostructure is formed through surface selenization using an ion-exchange process of SILAR grown ZnO nanorods. This process aims to raise the photoelectrochemical cell (PEC) performance of ZnO nanorods photoanode. The thickness of the ZnSe layer is optimized by varying the Se: NaBH4 ratios during the ion-exchange process.
The ZnO-ZnSe heterostructure formation was validated by Raman spectroscopy and X-ray photoelectron spectroscopy studies. Scanning electron microscopy images demonstrated that the ZnSe nanoparticle formation caused the original ZnO nanorod shape to diverge. Photoluminescence confirmed ZnO-ZnSe heterostructure as like UV-vis absorbance `spectroscopy. The I-V characteristics, chronoamperometry (ON/OFF), electrochemical impedance spectroscopy and Mott-Schottky measurements show all-inclusive increment in the PEC performance as a result of surface selenization of the ZnO nanorods photoanode. It is found that the ZnO-ZnSe heterostructure photoanode leverages of extreme photocurrent 0.94mA/cm2 at 1V vs. Ag/AgCl and a photoconversion efficiency of 0.19 % at 0.89 V vs. RHE. The type-II alignment between ZnO and ZnSe bands result in improved charge collection and a lower recombination rate leading to ZnO-ZnSe heterostructure's enhanced photoelectrochemical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信