无序高岭石纳米晶体螺旋生长的深入研究

IF 5.8 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Yongjie Yang , Long Chen , Jiale Pu , Qiang Luo , Maguy Jaber , Christelle Souprayen , Ning Wang , Qinfu Liu
{"title":"无序高岭石纳米晶体螺旋生长的深入研究","authors":"Yongjie Yang ,&nbsp;Long Chen ,&nbsp;Jiale Pu ,&nbsp;Qiang Luo ,&nbsp;Maguy Jaber ,&nbsp;Christelle Souprayen ,&nbsp;Ning Wang ,&nbsp;Qinfu Liu","doi":"10.1016/j.clay.2025.107981","DOIUrl":null,"url":null,"abstract":"<div><div>Structural disorder in kaolinite critically shapes its reactivity and performance across environmental and industrial contexts. Insights into spiral growth offer a mechanistic framework to decode the structural disorder of kaolinite and advance our understanding of its formation and properties. We identified a distinct expansion of the (001) interlayer spacing, from ∼7.16 Å in well-ordered kaolinite to ∼7.21 Å in disordered samples, along with selective enhancement of the (020) reflection in disordered nanocrystals. This structural disorder is closely linked to Al(4)-for-Si(4) substitution, with a high Al(4)/Al total ratio (∼2.83 %). The ionic radius ratio of <span><math><msub><mi>R</mi><mrow><msup><mi>Al</mi><mi>III</mi></msup><mfenced><mn>4</mn></mfenced></mrow></msub></math></span><sub>:</sub><span><math><msub><mi>R</mi><msup><mi>O</mi><mrow><mn>2</mn><mo>−</mo></mrow></msup></msub></math></span>=0.438 substantially exceeds that of ideal tetrahedral packing, compared to <span><math><msub><mi>R</mi><mrow><msup><mi>Si</mi><mi>IV</mi></msup><mfenced><mn>4</mn></mfenced></mrow></msub></math></span><sub>:</sub><span><math><msub><mi>R</mi><msup><mi>O</mi><mrow><mn>2</mn><mo>−</mo></mrow></msup></msub></math></span>=0.331, generating internal stress that exceeds the structural tolerance of triclinic kaolinite. When this stress exceeds a critical threshold, it likely promotes the formation of screw dislocations, which initiate spiral growth and generating stacking faults and in-plane lattice rotations (∼5°), as evidenced by Moiré fringe patterns and SAED. Spiral growth thus acts as a stress-adaptive mechanism, enabling the crystal to accommodate structural instability while maintaining long-range order and anisotropic deformation. These findings recast disorder as a stress-regulated growth strategy and offer a mechanistic blueprint for tuning structure in low-dimensional layered materials.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"277 ","pages":"Article 107981"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the spiral growth of disordered kaolinite nanocrystals\",\"authors\":\"Yongjie Yang ,&nbsp;Long Chen ,&nbsp;Jiale Pu ,&nbsp;Qiang Luo ,&nbsp;Maguy Jaber ,&nbsp;Christelle Souprayen ,&nbsp;Ning Wang ,&nbsp;Qinfu Liu\",\"doi\":\"10.1016/j.clay.2025.107981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structural disorder in kaolinite critically shapes its reactivity and performance across environmental and industrial contexts. Insights into spiral growth offer a mechanistic framework to decode the structural disorder of kaolinite and advance our understanding of its formation and properties. We identified a distinct expansion of the (001) interlayer spacing, from ∼7.16 Å in well-ordered kaolinite to ∼7.21 Å in disordered samples, along with selective enhancement of the (020) reflection in disordered nanocrystals. This structural disorder is closely linked to Al(4)-for-Si(4) substitution, with a high Al(4)/Al total ratio (∼2.83 %). The ionic radius ratio of <span><math><msub><mi>R</mi><mrow><msup><mi>Al</mi><mi>III</mi></msup><mfenced><mn>4</mn></mfenced></mrow></msub></math></span><sub>:</sub><span><math><msub><mi>R</mi><msup><mi>O</mi><mrow><mn>2</mn><mo>−</mo></mrow></msup></msub></math></span>=0.438 substantially exceeds that of ideal tetrahedral packing, compared to <span><math><msub><mi>R</mi><mrow><msup><mi>Si</mi><mi>IV</mi></msup><mfenced><mn>4</mn></mfenced></mrow></msub></math></span><sub>:</sub><span><math><msub><mi>R</mi><msup><mi>O</mi><mrow><mn>2</mn><mo>−</mo></mrow></msup></msub></math></span>=0.331, generating internal stress that exceeds the structural tolerance of triclinic kaolinite. When this stress exceeds a critical threshold, it likely promotes the formation of screw dislocations, which initiate spiral growth and generating stacking faults and in-plane lattice rotations (∼5°), as evidenced by Moiré fringe patterns and SAED. Spiral growth thus acts as a stress-adaptive mechanism, enabling the crystal to accommodate structural instability while maintaining long-range order and anisotropic deformation. These findings recast disorder as a stress-regulated growth strategy and offer a mechanistic blueprint for tuning structure in low-dimensional layered materials.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"277 \",\"pages\":\"Article 107981\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131725002868\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725002868","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高岭石的结构紊乱严重影响其在环境和工业背景下的反应性和性能。对螺旋生长的深入了解提供了一个机制框架来解读高岭石的结构紊乱,并促进我们对其形成和性质的理解。我们发现(001)层间距明显扩大,从有序高岭石中的~ 7.16 Å到无序样品中的~ 7.21 Å,同时无序纳米晶体中的(020)反射选择性增强。这种结构紊乱与Al(4)-for-Si(4)取代密切相关,具有高Al(4)/Al总比(~ 2.83%)。与RSiIV4:RO2−=0.331相比,RAlIII4:RO2−=0.438的离子半径比大大超过了理想四面体填料,产生的内应力超出了三斜高岭石的结构承受能力。当该应力超过临界阈值时,它可能促进螺旋位错的形成,螺旋位错启动螺旋生长并产生层错和面内晶格旋转(~ 5°),正如莫尔条纹图和SAED所证明的那样。因此,螺旋生长作为一种应力适应机制,使晶体能够适应结构不稳定性,同时保持长程有序和各向异性变形。这些发现将无序重新定义为应力调节的生长策略,并为低维层状材料的结构调整提供了机制蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insight into the spiral growth of disordered kaolinite nanocrystals
Structural disorder in kaolinite critically shapes its reactivity and performance across environmental and industrial contexts. Insights into spiral growth offer a mechanistic framework to decode the structural disorder of kaolinite and advance our understanding of its formation and properties. We identified a distinct expansion of the (001) interlayer spacing, from ∼7.16 Å in well-ordered kaolinite to ∼7.21 Å in disordered samples, along with selective enhancement of the (020) reflection in disordered nanocrystals. This structural disorder is closely linked to Al(4)-for-Si(4) substitution, with a high Al(4)/Al total ratio (∼2.83 %). The ionic radius ratio of RAlIII4:RO2=0.438 substantially exceeds that of ideal tetrahedral packing, compared to RSiIV4:RO2=0.331, generating internal stress that exceeds the structural tolerance of triclinic kaolinite. When this stress exceeds a critical threshold, it likely promotes the formation of screw dislocations, which initiate spiral growth and generating stacking faults and in-plane lattice rotations (∼5°), as evidenced by Moiré fringe patterns and SAED. Spiral growth thus acts as a stress-adaptive mechanism, enabling the crystal to accommodate structural instability while maintaining long-range order and anisotropic deformation. These findings recast disorder as a stress-regulated growth strategy and offer a mechanistic blueprint for tuning structure in low-dimensional layered materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信