{"title":"基于不确定量化ML集合的空间大地测量模拟全球对流层模型的推导","authors":"Matthias Schartner","doi":"10.1007/s00190-025-01996-w","DOIUrl":null,"url":null,"abstract":"<p>This work presents a global, three-dimensional (latitude–longitude–time) model of the refractive index structure constant (<span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 1240.1 994.3\" width=\"2.88ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1011\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">C_n</script></span>), enabling the spatiotemporally correlated simulation of tropospheric delays for space geodetic observations at radio frequencies. The model is based on an ensemble of 100 XGBoost models trained on 21 years of observations from 18,500 GNSS stations, using meteorological variables from ERA5 as features. It effectively captures high-frequency spatial and temporal variations, achieving a mean absolute error of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -949.2 4492.4 1037.3\" width=\"10.434ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use><use x=\"1279\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><g transform=\"translate(1946,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-6D\" y=\"0\"></use><g transform=\"translate(833,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"778\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1279\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1779\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/tex\">0.52\\,\\hbox {m}^{-1/3}</script></span>. To simplify the use of the model, monthly average <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 1240.1 994.3\" width=\"2.88ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1011\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">C_n</script></span> values are computed on a regular <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.909ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -733.9 3781.9 822.1\" width=\"8.784ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use xlink:href=\"#MJMAIN-32\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use><use x=\"1501\" xlink:href=\"#MJMAIN-D7\" y=\"0\"></use><g transform=\"translate(2502,0)\"><use xlink:href=\"#MJMAIN-32\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">2.5\\times 2.5</script></span> degree grid, which are sufficiently accurate for most simulation studies. Besides, the model provides a Monte Carlo-based measure for the prediction uncertainty based on the XGBoost ensemble spread, which is revealed to be primarily driven by feature augmentation using ensemble spread information from ERA5. The model is validated both independently on 2500 GNSS stations over 3 years and externally through very long baseline interferometry simulations. The results demonstrate a significant improvement over current state-of-the-art simulation approaches.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"32 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deriving a global troposphere model for space geodetic simulations based on an ML ensemble featuring uncertainty quantification\",\"authors\":\"Matthias Schartner\",\"doi\":\"10.1007/s00190-025-01996-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents a global, three-dimensional (latitude–longitude–time) model of the refractive index structure constant (<span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -777 1240.1 994.3\\\" width=\\\"2.88ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1011\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"-213\\\"></use></g></svg></span><script type=\\\"math/tex\\\">C_n</script></span>), enabling the spatiotemporally correlated simulation of tropospheric delays for space geodetic observations at radio frequencies. The model is based on an ensemble of 100 XGBoost models trained on 21 years of observations from 18,500 GNSS stations, using meteorological variables from ERA5 as features. It effectively captures high-frequency spatial and temporal variations, achieving a mean absolute error of <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -949.2 4492.4 1037.3\\\" width=\\\"10.434ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use xlink:href=\\\"#MJMAIN-30\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use><use x=\\\"1279\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1946,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-6D\\\" y=\\\"0\\\"></use><g transform=\\\"translate(833,362)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"778\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1279\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1779\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/tex\\\">0.52\\\\,\\\\hbox {m}^{-1/3}</script></span>. To simplify the use of the model, monthly average <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -777 1240.1 994.3\\\" width=\\\"2.88ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1011\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"-213\\\"></use></g></svg></span><script type=\\\"math/tex\\\">C_n</script></span> values are computed on a regular <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.909ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -733.9 3781.9 822.1\\\" width=\\\"8.784ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use><use x=\\\"1501\\\" xlink:href=\\\"#MJMAIN-D7\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2502,0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">2.5\\\\times 2.5</script></span> degree grid, which are sufficiently accurate for most simulation studies. Besides, the model provides a Monte Carlo-based measure for the prediction uncertainty based on the XGBoost ensemble spread, which is revealed to be primarily driven by feature augmentation using ensemble spread information from ERA5. The model is validated both independently on 2500 GNSS stations over 3 years and externally through very long baseline interferometry simulations. The results demonstrate a significant improvement over current state-of-the-art simulation approaches.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-025-01996-w\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-025-01996-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Deriving a global troposphere model for space geodetic simulations based on an ML ensemble featuring uncertainty quantification
This work presents a global, three-dimensional (latitude–longitude–time) model of the refractive index structure constant (), enabling the spatiotemporally correlated simulation of tropospheric delays for space geodetic observations at radio frequencies. The model is based on an ensemble of 100 XGBoost models trained on 21 years of observations from 18,500 GNSS stations, using meteorological variables from ERA5 as features. It effectively captures high-frequency spatial and temporal variations, achieving a mean absolute error of . To simplify the use of the model, monthly average values are computed on a regular degree grid, which are sufficiently accurate for most simulation studies. Besides, the model provides a Monte Carlo-based measure for the prediction uncertainty based on the XGBoost ensemble spread, which is revealed to be primarily driven by feature augmentation using ensemble spread information from ERA5. The model is validated both independently on 2500 GNSS stations over 3 years and externally through very long baseline interferometry simulations. The results demonstrate a significant improvement over current state-of-the-art simulation approaches.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics