{"title":"调整MOF纳米片中的电子云密度以增强pemfc中的质子传导","authors":"Dongxu Shen, Yarong Liu, Chongchong Chen, Zhirong Yang, Hao Li, Shanghao Xiao, Wenjia Wu, Jingtao Wang","doi":"10.1002/adfm.202515358","DOIUrl":null,"url":null,"abstract":"Precise construction of proton transfer pathways and modulation of proton carrier microenvironments are crucial for achieving high proton conduction in proton exchange membranes (PEMs). Despite extensive efforts to tailor these microenvironments, the underlying regulation of electron cloud density around proton carriers, intrinsically linked to proton conduction, remains largely overlooked. Herein, MIL‐53‐SO<jats:sub>3</jats:sub>H‐X (X = –F, –Br, –H, –CH<jats:sub>3</jats:sub>) nanosheets are synthesized via solvothermal coordination of Cr<jats:sup>3+</jats:sup> ions with functionalized terephthalic acid (BDC‐X) ligands, followed by post‐synthetic sulfonation at unsaturated Cr<jats:sup>3+</jats:sup> sites to anchor –SO<jats:sub>3</jats:sub>H groups. Density functional theory (DFT) calculations and experimental results reveal that electron‐withdrawing –F groups enhance the electron cloud density around –SO<jats:sub>3</jats:sub>H sites, shortening transfer distance, aligning water molecules, and lowering the proton transfer barrier. Conversely, electron‐donating –CH<jats:sub>3</jats:sub> groups deplete the electron cloud density in the –SO<jats:sub>3</jats:sub>H region, disrupting proton transport pathways. The MIL‐53‐SO<jats:sub>3</jats:sub>H‐F nanosheet achieves an intrinsic proton conductivity of 298.3 mS cm<jats:sup>−1</jats:sup> at 80 °C and 98% RH, a 4.5‐fold increase over MIL‐53‐SO<jats:sub>3</jats:sub>H‐CH<jats:sub>3</jats:sub> nanosheets (65.5 mS cm<jats:sup>−1</jats:sup>), as measured by the comb electrode. The corresponding lamellar membrane delivers a high peak power density of 734.8 mW cm<jats:sup>−2</jats:sup> and remains stable for over 100 h in H<jats:sub>2</jats:sub>/O<jats:sub>2</jats:sub> PEM fuel cells (PEMFCs).","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"141 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Electron Cloud Density in MOF Nanosheets for Enhanced Proton Conduction in PEMFCs\",\"authors\":\"Dongxu Shen, Yarong Liu, Chongchong Chen, Zhirong Yang, Hao Li, Shanghao Xiao, Wenjia Wu, Jingtao Wang\",\"doi\":\"10.1002/adfm.202515358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise construction of proton transfer pathways and modulation of proton carrier microenvironments are crucial for achieving high proton conduction in proton exchange membranes (PEMs). Despite extensive efforts to tailor these microenvironments, the underlying regulation of electron cloud density around proton carriers, intrinsically linked to proton conduction, remains largely overlooked. Herein, MIL‐53‐SO<jats:sub>3</jats:sub>H‐X (X = –F, –Br, –H, –CH<jats:sub>3</jats:sub>) nanosheets are synthesized via solvothermal coordination of Cr<jats:sup>3+</jats:sup> ions with functionalized terephthalic acid (BDC‐X) ligands, followed by post‐synthetic sulfonation at unsaturated Cr<jats:sup>3+</jats:sup> sites to anchor –SO<jats:sub>3</jats:sub>H groups. Density functional theory (DFT) calculations and experimental results reveal that electron‐withdrawing –F groups enhance the electron cloud density around –SO<jats:sub>3</jats:sub>H sites, shortening transfer distance, aligning water molecules, and lowering the proton transfer barrier. Conversely, electron‐donating –CH<jats:sub>3</jats:sub> groups deplete the electron cloud density in the –SO<jats:sub>3</jats:sub>H region, disrupting proton transport pathways. The MIL‐53‐SO<jats:sub>3</jats:sub>H‐F nanosheet achieves an intrinsic proton conductivity of 298.3 mS cm<jats:sup>−1</jats:sup> at 80 °C and 98% RH, a 4.5‐fold increase over MIL‐53‐SO<jats:sub>3</jats:sub>H‐CH<jats:sub>3</jats:sub> nanosheets (65.5 mS cm<jats:sup>−1</jats:sup>), as measured by the comb electrode. The corresponding lamellar membrane delivers a high peak power density of 734.8 mW cm<jats:sup>−2</jats:sup> and remains stable for over 100 h in H<jats:sub>2</jats:sub>/O<jats:sub>2</jats:sub> PEM fuel cells (PEMFCs).\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202515358\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202515358","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在质子交换膜中精确构建质子转移途径和调节质子载体微环境是实现质子高传导的关键。尽管大量的努力来定制这些微环境,质子载体周围的电子云密度的潜在调节,本质上与质子传导有关,仍然在很大程度上被忽视。在此,MIL - 53 -SO3H - X (X = -F, -Br, -H, -CH3)纳米片通过Cr3+离子与功能化对苯二甲酸(BDC - X)配体的溶剂热配位合成,然后在合成后在不饱和Cr3+位点进行磺化以锚定-SO3H基团。密度泛函理论(DFT)计算和实验结果表明,吸电子-F基团增强了-SO3H位点周围的电子云密度,缩短了转移距离,使水分子排列一致,降低了质子转移势垒。相反,提供电子的-CH3基团耗尽了-SO3H区域的电子云密度,破坏了质子的传输途径。在80°C和98% RH条件下,MIL - 53‐SO3H‐F纳米片的固有质子电导率达到298.3 mS cm - 1,比梳子电极测量的MIL - 53‐SO3H‐CH3纳米片(65.5 mS cm - 1)提高了4.5倍。相应的层状膜提供734.8 mW cm−2的峰值功率密度,并在H2/O2 PEM燃料电池(pemfc)中保持超过100小时的稳定。
Tuning Electron Cloud Density in MOF Nanosheets for Enhanced Proton Conduction in PEMFCs
Precise construction of proton transfer pathways and modulation of proton carrier microenvironments are crucial for achieving high proton conduction in proton exchange membranes (PEMs). Despite extensive efforts to tailor these microenvironments, the underlying regulation of electron cloud density around proton carriers, intrinsically linked to proton conduction, remains largely overlooked. Herein, MIL‐53‐SO3H‐X (X = –F, –Br, –H, –CH3) nanosheets are synthesized via solvothermal coordination of Cr3+ ions with functionalized terephthalic acid (BDC‐X) ligands, followed by post‐synthetic sulfonation at unsaturated Cr3+ sites to anchor –SO3H groups. Density functional theory (DFT) calculations and experimental results reveal that electron‐withdrawing –F groups enhance the electron cloud density around –SO3H sites, shortening transfer distance, aligning water molecules, and lowering the proton transfer barrier. Conversely, electron‐donating –CH3 groups deplete the electron cloud density in the –SO3H region, disrupting proton transport pathways. The MIL‐53‐SO3H‐F nanosheet achieves an intrinsic proton conductivity of 298.3 mS cm−1 at 80 °C and 98% RH, a 4.5‐fold increase over MIL‐53‐SO3H‐CH3 nanosheets (65.5 mS cm−1), as measured by the comb electrode. The corresponding lamellar membrane delivers a high peak power density of 734.8 mW cm−2 and remains stable for over 100 h in H2/O2 PEM fuel cells (PEMFCs).
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.