{"title":"叠置伪收敛序列与多项式Dedekind域","authors":"Giulio Peruginelli","doi":"10.2140/ant.2025.19.1947","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>∈</mo>\n<mi>ℤ</mi></math> be a prime, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"false\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math> a fixed algebraic closure of the field of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic numbers and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"false\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math> the absolute integral closure of the ring of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic integers. Given a residually algebraic torsion extension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>p</mi><mo stretchy=\"false\">)</mo></mrow></msub></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></math>, by Kaplansky’s characterization of immediate extensions of valued fields, there exists a pseudo-convergent sequence of transcendental type <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi>\n<mo>=</mo> <msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub>\n<mo>⊂</mo><mover accent=\"false\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math> such that </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>W</mi>\n<mo>=</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>p</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>E</mi></mrow></msub>\n<mo>=</mo>\n<mo stretchy=\"false\">{</mo><mi>ϕ</mi>\n<mo>∈</mo>\n<mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo><mo>∣</mo><mi>ϕ</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo>\n<mo>∈</mo><mover accent=\"false\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover><!--mstyle--><mtext> for all sufficiently large </mtext><!--/mstyle--><mi>n</mi>\n<mo>∈</mo>\n<mi>ℕ</mi><mo stretchy=\"false\">}</mo><mo>.</mo>\n</math>\n</div>\n<p> We show here that we may assume that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> is stacked, in the sense that, for each <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>∈</mo>\n<mi>ℕ</mi></math>, the residue field (resp. the value group) of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"false\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover>\n<mo>∩</mo> <msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> is contained in the residue field (resp. the value group) of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"false\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover>\n<mo>∩</mo> <msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo></math>; this property of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> allows us to describe the residue field and value group of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>. In particular, if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> is a DVR, then there exists <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> in the completion <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mi>t</mi><mo stretchy=\"false\">]</mo><mover accent=\"false\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> transcendental over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi></math>, such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi>\n<mo>=</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>p</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>α</mi></mrow></msub>\n<mo>=</mo>\n<mo stretchy=\"false\">{</mo><mi>ϕ</mi>\n<mo>∈</mo>\n<mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo><mo>∣</mo><mi>ϕ</mi><mo stretchy=\"false\">(</mo><mi>α</mi><mo stretchy=\"false\">)</mo>\n<mo>∈</mo> <msub><mrow><mi mathvariant=\"double-struck\">𝕆</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">}</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝕆</mi></mrow><mrow><mi>p</mi></mrow></msub></math> is the unique local ring of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math>; <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> belongs to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mi>t</mi><mo stretchy=\"false\">]</mo><mover accent=\"false\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math> if and only if the residue field extension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi><mo>∕</mo><mi>M</mi>\n<mo>⊇</mo>\n<mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math> is finite. As an application, we provide a full characterization of the Dedekind domains between <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi><mo stretchy=\"false\">[</mo><mi>X</mi><mo stretchy=\"false\">]</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi><mo stretchy=\"false\">[</mo><mi>X</mi><mo stretchy=\"false\">]</mo></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"62 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stacked pseudo-convergent sequences and polynomial Dedekind domains\",\"authors\":\"Giulio Peruginelli\",\"doi\":\"10.2140/ant.2025.19.1947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>∈</mo>\\n<mi>ℤ</mi></math> be a prime, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover></math> a fixed algebraic closure of the field of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-adic numbers and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover></math> the absolute integral closure of the ring of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-adic integers. Given a residually algebraic torsion extension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>W</mi></math> of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mi>p</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msub></math> to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℚ</mi><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo stretchy=\\\"false\\\">)</mo></math>, by Kaplansky’s characterization of immediate extensions of valued fields, there exists a pseudo-convergent sequence of transcendental type <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi>\\n<mo>=</mo> <msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub>\\n<mo>⊂</mo><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover></math> such that </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<mi>W</mi>\\n<mo>=</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mi>p</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>E</mi></mrow></msub>\\n<mo>=</mo>\\n<mo stretchy=\\\"false\\\">{</mo><mi>ϕ</mi>\\n<mo>∈</mo>\\n<mi>ℚ</mi><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo stretchy=\\\"false\\\">)</mo><mo>∣</mo><mi>ϕ</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo>\\n<mo>∈</mo><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover><!--mstyle--><mtext> for all sufficiently large </mtext><!--/mstyle--><mi>n</mi>\\n<mo>∈</mo>\\n<mi>ℕ</mi><mo stretchy=\\\"false\\\">}</mo><mo>.</mo>\\n</math>\\n</div>\\n<p> We show here that we may assume that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi></math> is stacked, in the sense that, for each <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi>\\n<mo>∈</mo>\\n<mi>ℕ</mi></math>, the residue field (resp. the value group) of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover>\\n<mo>∩</mo> <msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math> is contained in the residue field (resp. the value group) of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover>\\n<mo>∩</mo> <msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>; this property of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi></math> allows us to describe the residue field and value group of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>W</mi></math>. In particular, if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>W</mi></math> is a DVR, then there exists <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math> in the completion <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">[</mo><mi>t</mi><mo stretchy=\\\"false\\\">]</mo><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math> transcendental over <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℚ</mi></math>, such that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>W</mi>\\n<mo>=</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mi>p</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>α</mi></mrow></msub>\\n<mo>=</mo>\\n<mo stretchy=\\\"false\\\">{</mo><mi>ϕ</mi>\\n<mo>∈</mo>\\n<mi>ℚ</mi><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo stretchy=\\\"false\\\">)</mo><mo>∣</mo><mi>ϕ</mi><mo stretchy=\\\"false\\\">(</mo><mi>α</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>∈</mo> <msub><mrow><mi mathvariant=\\\"double-struck\\\">𝕆</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">}</mo></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝕆</mi></mrow><mrow><mi>p</mi></mrow></msub></math> is the unique local ring of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math>; <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math> belongs to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">[</mo><mi>t</mi><mo stretchy=\\\"false\\\">]</mo><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover></math> if and only if the residue field extension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>W</mi><mo>∕</mo><mi>M</mi>\\n<mo>⊇</mo>\\n<mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math> is finite. As an application, we provide a full characterization of the Dedekind domains between <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℤ</mi><mo stretchy=\\\"false\\\">[</mo><mi>X</mi><mo stretchy=\\\"false\\\">]</mo></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℚ</mi><mo stretchy=\\\"false\\\">[</mo><mi>X</mi><mo stretchy=\\\"false\\\">]</mo></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1947\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1947","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stacked pseudo-convergent sequences and polynomial Dedekind domains
Let be a prime, a fixed algebraic closure of the field of -adic numbers and the absolute integral closure of the ring of -adic integers. Given a residually algebraic torsion extension of to , by Kaplansky’s characterization of immediate extensions of valued fields, there exists a pseudo-convergent sequence of transcendental type such that
We show here that we may assume that is stacked, in the sense that, for each , the residue field (resp. the value group) of is contained in the residue field (resp. the value group) of ; this property of allows us to describe the residue field and value group of . In particular, if is a DVR, then there exists in the completion of , transcendental over , such that , where is the unique local ring of ; belongs to if and only if the residue field extension is finite. As an application, we provide a full characterization of the Dedekind domains between and .
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.