纳米工程西妥昔单抗-铜配合物用于头颈癌的靶向药物递送。

IF 3
Majed S AlFayi
{"title":"纳米工程西妥昔单抗-铜配合物用于头颈癌的靶向药物递送。","authors":"Majed S AlFayi","doi":"10.2174/0115672018373037250821092024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Head and neck squamous cell carcinomas (HNSCCs) require precise treatments. Cetuximab (Ceb) targets EGFR, and copper (Cu) compounds show promise in cancer therapy. This study investigates Ceb-Cu-p-NC, a nanoengineered drug delivery system, designed for enhanced HNSCC treatment. The objective of this study is to evaluate the potential of Ceb-Cu-p-NC in HNSCC treatment.</p><p><strong>Methods: </strong>Cu precursor, Ceb, poloxamer-407, and hyaluronic acid were used to synthesize Ceb-Cu-p- NC. Fluorescence microscopy and UV spectrophotometry were utilized to determine Ceb integration efficiency, cellular interactions, and drug concentration. Drug release was assessed via in-vitro studies at pH 5.4 and 7.4. Studies using A-253 cell lines were conducted to analyze cytotoxicity, viability, apoptosis, and cell cycle arrest.</p><p><strong>Results: </strong>In this study, Ceb-Cu-p-NC showed size reduction (85-120 nm) and zeta potential shift. The Ceb integration was 34.92% with 82.5% entrapment efficiency. Cytotoxicity studies revealed enhanced efficacy (IC50: 27.55 mg/mL - 51.47 mg/mL). Flow cytometry showed significant apoptosis and S-phase cell cycle arrest, with statistically significant results (p < 0.05).</p><p><strong>Discussion: </strong>Ceb conjugation to Cu-p-NC enhanced nanoparticle stability, reduced surface charge, and enabled targeted, controlled drug release. The formulation showed superior cytotoxicity, apoptosis induction, and S-phase arrest in A-253 cells compared to free Ceb, highlighting its potential as an effective targeted therapy for head and neck cancer.</p><p><strong>Conclusion: </strong>Ceb-Cu-p-NC demonstrates targeted efficacy against HNSCCs, with controlled release, increased cytotoxicity, and apoptosis.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-Engineered Cetuximab-Copper Complexes for Targeted Drug Delivery in Head and Neck Cancer.\",\"authors\":\"Majed S AlFayi\",\"doi\":\"10.2174/0115672018373037250821092024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Head and neck squamous cell carcinomas (HNSCCs) require precise treatments. Cetuximab (Ceb) targets EGFR, and copper (Cu) compounds show promise in cancer therapy. This study investigates Ceb-Cu-p-NC, a nanoengineered drug delivery system, designed for enhanced HNSCC treatment. The objective of this study is to evaluate the potential of Ceb-Cu-p-NC in HNSCC treatment.</p><p><strong>Methods: </strong>Cu precursor, Ceb, poloxamer-407, and hyaluronic acid were used to synthesize Ceb-Cu-p- NC. Fluorescence microscopy and UV spectrophotometry were utilized to determine Ceb integration efficiency, cellular interactions, and drug concentration. Drug release was assessed via in-vitro studies at pH 5.4 and 7.4. Studies using A-253 cell lines were conducted to analyze cytotoxicity, viability, apoptosis, and cell cycle arrest.</p><p><strong>Results: </strong>In this study, Ceb-Cu-p-NC showed size reduction (85-120 nm) and zeta potential shift. The Ceb integration was 34.92% with 82.5% entrapment efficiency. Cytotoxicity studies revealed enhanced efficacy (IC50: 27.55 mg/mL - 51.47 mg/mL). Flow cytometry showed significant apoptosis and S-phase cell cycle arrest, with statistically significant results (p < 0.05).</p><p><strong>Discussion: </strong>Ceb conjugation to Cu-p-NC enhanced nanoparticle stability, reduced surface charge, and enabled targeted, controlled drug release. The formulation showed superior cytotoxicity, apoptosis induction, and S-phase arrest in A-253 cells compared to free Ceb, highlighting its potential as an effective targeted therapy for head and neck cancer.</p><p><strong>Conclusion: </strong>Ceb-Cu-p-NC demonstrates targeted efficacy against HNSCCs, with controlled release, increased cytotoxicity, and apoptosis.</p>\",\"PeriodicalId\":94287,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018373037250821092024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018373037250821092024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:头颈部鳞状细胞癌(HNSCCs)需要精确的治疗。西妥昔单抗(Ceb)靶向EGFR,铜(Cu)化合物在癌症治疗中显示出希望。本研究研究了Ceb-Cu-p-NC,一种纳米工程药物输送系统,旨在增强HNSCC的治疗。本研究的目的是评估Ceb-Cu-p-NC在HNSCC治疗中的潜力。方法:以铜前体Ceb、poloxomer -407和透明质酸为原料合成Ceb-Cu-p- NC。荧光显微镜和紫外分光光度法测定Ceb整合效率、细胞相互作用和药物浓度。通过pH值为5.4和7.4的体外研究评估药物释放。使用A-253细胞系进行研究,分析细胞毒性、活力、凋亡和细胞周期阻滞。结果:Ceb-Cu-p-NC的尺寸减小(85 ~ 120nm), zeta电位发生位移。Ceb整合率为34.92%,捕获效率为82.5%。细胞毒性研究显示其疗效增强(IC50: 27.55 mg/mL - 51.47 mg/mL)。流式细胞术显示明显的细胞凋亡和s期细胞周期阻滞,差异有统计学意义(p < 0.05)。讨论:Ceb与Cu-p-NC的结合增强了纳米颗粒的稳定性,降低了表面电荷,并实现了靶向,受控的药物释放。与游离Ceb相比,该制剂在A-253细胞中显示出优越的细胞毒性、细胞凋亡诱导和s期阻滞,突出了其作为头颈癌有效靶向治疗的潜力。结论:Ceb-Cu-p-NC对HNSCCs具有靶向作用,且具有控释、细胞毒性和细胞凋亡增加的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nano-Engineered Cetuximab-Copper Complexes for Targeted Drug Delivery in Head and Neck Cancer.

Background: Head and neck squamous cell carcinomas (HNSCCs) require precise treatments. Cetuximab (Ceb) targets EGFR, and copper (Cu) compounds show promise in cancer therapy. This study investigates Ceb-Cu-p-NC, a nanoengineered drug delivery system, designed for enhanced HNSCC treatment. The objective of this study is to evaluate the potential of Ceb-Cu-p-NC in HNSCC treatment.

Methods: Cu precursor, Ceb, poloxamer-407, and hyaluronic acid were used to synthesize Ceb-Cu-p- NC. Fluorescence microscopy and UV spectrophotometry were utilized to determine Ceb integration efficiency, cellular interactions, and drug concentration. Drug release was assessed via in-vitro studies at pH 5.4 and 7.4. Studies using A-253 cell lines were conducted to analyze cytotoxicity, viability, apoptosis, and cell cycle arrest.

Results: In this study, Ceb-Cu-p-NC showed size reduction (85-120 nm) and zeta potential shift. The Ceb integration was 34.92% with 82.5% entrapment efficiency. Cytotoxicity studies revealed enhanced efficacy (IC50: 27.55 mg/mL - 51.47 mg/mL). Flow cytometry showed significant apoptosis and S-phase cell cycle arrest, with statistically significant results (p < 0.05).

Discussion: Ceb conjugation to Cu-p-NC enhanced nanoparticle stability, reduced surface charge, and enabled targeted, controlled drug release. The formulation showed superior cytotoxicity, apoptosis induction, and S-phase arrest in A-253 cells compared to free Ceb, highlighting its potential as an effective targeted therapy for head and neck cancer.

Conclusion: Ceb-Cu-p-NC demonstrates targeted efficacy against HNSCCs, with controlled release, increased cytotoxicity, and apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信