基于ai增强算法的功能性荧光探针亚细胞定位与运动精子功能分析

IF 2.7
Ya-Zhen Wei, Yu-Xiang Nong, Si-Xian Wu, Xiao-Xu Yang, Yu-Xi Chen, Kang-Kang Yu, Han-Yu Zhu, Xu-Dong Shan, Wei-Wei Zhi, Ang Bian, Wen-Ming Xu
{"title":"基于ai增强算法的功能性荧光探针亚细胞定位与运动精子功能分析","authors":"Ya-Zhen Wei, Yu-Xiang Nong, Si-Xian Wu, Xiao-Xu Yang, Yu-Xi Chen, Kang-Kang Yu, Han-Yu Zhu, Xu-Dong Shan, Wei-Wei Zhi, Ang Bian, Wen-Ming Xu","doi":"10.4103/aja202545","DOIUrl":null,"url":null,"abstract":"<p><p>In the evaluation of male infertility, precise assessment of sperm functional competence has surpassed the requirements of conventional semen parameters. Existing computer-aided analysis systems are deficient at the molecular diagnostic level and also face challenges in live-cell fluorescence quantification. To address these issues, we have developed a novel integrated computational-imaging platform that combines a fine-tuned You Only Look Once version 8 (YOLOv8) architecture, tailored for the EVISEN dataset, with dual-probe fluorescence microscopy image segmentation, enabling simultaneous quantification of intracellular pH (pHi) and mitochondrial DNA G-quadruplexes (mtDNA G4s). By automating the localization of fluorescent foci, our algorithm systematically discriminates between the fluorescent signatures of the sperm head and principal piece, revealing correlations between fluorescence intensity ratios and sperm functional outcomes. This study demonstrates the potential of artificial intelligence (AI)-enhanced multimodal sperm analysis for molecular phenotyping of sperm functional competence. Integrating deep learning with live-cell fluorescence imaging, our platform offers a transformative tool for mechanistically informed diagnostics of male infertility.</p>","PeriodicalId":93889,"journal":{"name":"Asian journal of andrology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated subcellular localization of functional fluorescence probes and functional analysis in motile spermatozoa by an AI-enhanced algorithm.\",\"authors\":\"Ya-Zhen Wei, Yu-Xiang Nong, Si-Xian Wu, Xiao-Xu Yang, Yu-Xi Chen, Kang-Kang Yu, Han-Yu Zhu, Xu-Dong Shan, Wei-Wei Zhi, Ang Bian, Wen-Ming Xu\",\"doi\":\"10.4103/aja202545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the evaluation of male infertility, precise assessment of sperm functional competence has surpassed the requirements of conventional semen parameters. Existing computer-aided analysis systems are deficient at the molecular diagnostic level and also face challenges in live-cell fluorescence quantification. To address these issues, we have developed a novel integrated computational-imaging platform that combines a fine-tuned You Only Look Once version 8 (YOLOv8) architecture, tailored for the EVISEN dataset, with dual-probe fluorescence microscopy image segmentation, enabling simultaneous quantification of intracellular pH (pHi) and mitochondrial DNA G-quadruplexes (mtDNA G4s). By automating the localization of fluorescent foci, our algorithm systematically discriminates between the fluorescent signatures of the sperm head and principal piece, revealing correlations between fluorescence intensity ratios and sperm functional outcomes. This study demonstrates the potential of artificial intelligence (AI)-enhanced multimodal sperm analysis for molecular phenotyping of sperm functional competence. Integrating deep learning with live-cell fluorescence imaging, our platform offers a transformative tool for mechanistically informed diagnostics of male infertility.</p>\",\"PeriodicalId\":93889,\"journal\":{\"name\":\"Asian journal of andrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian journal of andrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/aja202545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian journal of andrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/aja202545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在男性不育的评估中,精子功能能力的精确评估已经超越了传统精液参数的要求。现有的计算机辅助分析系统在分子诊断水平上存在不足,在活细胞荧光定量方面也面临挑战。为了解决这些问题,我们开发了一种新型的集成计算成像平台,该平台结合了为EVISEN数据集量身定制的微调You Only Look Once version 8 (YOLOv8)架构,具有双探针荧光显微镜图像分割,能够同时定量细胞内pH (pHi)和线粒体DNA g -四倍体(mtDNA G4s)。通过自动定位荧光焦点,我们的算法系统地区分了精子头部和主片的荧光特征,揭示了荧光强度比与精子功能结果之间的相关性。这项研究证明了人工智能(AI)增强的多模态精子分析在精子功能能力分子表型分析中的潜力。我们的平台将深度学习与活细胞荧光成像相结合,为男性不育症的机械诊断提供了一种变革性的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated subcellular localization of functional fluorescence probes and functional analysis in motile spermatozoa by an AI-enhanced algorithm.

In the evaluation of male infertility, precise assessment of sperm functional competence has surpassed the requirements of conventional semen parameters. Existing computer-aided analysis systems are deficient at the molecular diagnostic level and also face challenges in live-cell fluorescence quantification. To address these issues, we have developed a novel integrated computational-imaging platform that combines a fine-tuned You Only Look Once version 8 (YOLOv8) architecture, tailored for the EVISEN dataset, with dual-probe fluorescence microscopy image segmentation, enabling simultaneous quantification of intracellular pH (pHi) and mitochondrial DNA G-quadruplexes (mtDNA G4s). By automating the localization of fluorescent foci, our algorithm systematically discriminates between the fluorescent signatures of the sperm head and principal piece, revealing correlations between fluorescence intensity ratios and sperm functional outcomes. This study demonstrates the potential of artificial intelligence (AI)-enhanced multimodal sperm analysis for molecular phenotyping of sperm functional competence. Integrating deep learning with live-cell fluorescence imaging, our platform offers a transformative tool for mechanistically informed diagnostics of male infertility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信