宿主移动对媒介传播疾病流行的影响。

IF 2.3 4区 数学 Q2 BIOLOGY
Daozhou Gao, Yuan Lou
{"title":"宿主移动对媒介传播疾病流行的影响。","authors":"Daozhou Gao, Yuan Lou","doi":"10.1007/s00285-025-02254-5","DOIUrl":null,"url":null,"abstract":"<p><p>Human movement plays a key role in spreading vector-borne diseases globally. Various spatial models of vector-borne diseases have been proposed and analyzed, mainly focusing on disease dynamics. In this paper, based on a multi-patch Ross-Macdonald model, we study the impact of host migration on the local and global host disease prevalences. Specifically, we find that the local disease prevalence of any patch is bounded by the minimum and maximum disease prevalences of all disconnected patches and establish a weak order-preserving property. For global disease prevalence, we derive its formula at both zero and infinite dispersal rates and compare them under certain conditions, and calculate the right derivative at no dispersal. In the case of two patches, we give two complete classifications of the model parameter space: one is to compare the host disease prevalences with and without host dispersal, and the other is to determine the monotonicity of host disease prevalence with respect to host dispersal rate. Numerical simulations confirm inconsistence between disease persistence and host disease prevalence, as well as between host prevalence and vector prevalence in response to host movement. In general, a more uneven distribution of hosts and vectors in a homogeneous environment leads to lower host prevalence but higher vector prevalence and stronger disease persistence.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 3","pages":"33"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413432/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of host movement on the prevalence of vector-borne diseases.\",\"authors\":\"Daozhou Gao, Yuan Lou\",\"doi\":\"10.1007/s00285-025-02254-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human movement plays a key role in spreading vector-borne diseases globally. Various spatial models of vector-borne diseases have been proposed and analyzed, mainly focusing on disease dynamics. In this paper, based on a multi-patch Ross-Macdonald model, we study the impact of host migration on the local and global host disease prevalences. Specifically, we find that the local disease prevalence of any patch is bounded by the minimum and maximum disease prevalences of all disconnected patches and establish a weak order-preserving property. For global disease prevalence, we derive its formula at both zero and infinite dispersal rates and compare them under certain conditions, and calculate the right derivative at no dispersal. In the case of two patches, we give two complete classifications of the model parameter space: one is to compare the host disease prevalences with and without host dispersal, and the other is to determine the monotonicity of host disease prevalence with respect to host dispersal rate. Numerical simulations confirm inconsistence between disease persistence and host disease prevalence, as well as between host prevalence and vector prevalence in response to host movement. In general, a more uneven distribution of hosts and vectors in a homogeneous environment leads to lower host prevalence but higher vector prevalence and stronger disease persistence.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 3\",\"pages\":\"33\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413432/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02254-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02254-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类运动在媒介传播疾病的全球传播中起着关键作用。人们提出并分析了各种媒介传播疾病的空间模型,主要集中在疾病动力学方面。本文基于多斑块Ross-Macdonald模型,研究了宿主迁移对本地和全球宿主疾病患病率的影响。具体地说,我们发现任何斑块的局部患病率都以所有不相连斑块的最小和最大患病率为界,并建立了弱保序性质。对于全球疾病患病率,我们推导了零扩散率和无限扩散率下的公式,并在一定条件下对它们进行了比较,并计算了无扩散时的正确导数。在两个斑块的情况下,我们给出了两种完整的模型参数空间分类:一种是比较有和没有宿主分散的宿主患病率,另一种是确定宿主患病率相对于宿主分散率的单调性。数值模拟证实了疾病持续性与宿主疾病流行之间的不一致,以及宿主流行与媒介流行对宿主运动的反应之间的不一致。一般来说,在同质环境中,宿主和病媒分布更不均匀,导致宿主患病率较低,但病媒患病率较高,疾病持久性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of host movement on the prevalence of vector-borne diseases.

Effect of host movement on the prevalence of vector-borne diseases.

Effect of host movement on the prevalence of vector-borne diseases.

Effect of host movement on the prevalence of vector-borne diseases.

Human movement plays a key role in spreading vector-borne diseases globally. Various spatial models of vector-borne diseases have been proposed and analyzed, mainly focusing on disease dynamics. In this paper, based on a multi-patch Ross-Macdonald model, we study the impact of host migration on the local and global host disease prevalences. Specifically, we find that the local disease prevalence of any patch is bounded by the minimum and maximum disease prevalences of all disconnected patches and establish a weak order-preserving property. For global disease prevalence, we derive its formula at both zero and infinite dispersal rates and compare them under certain conditions, and calculate the right derivative at no dispersal. In the case of two patches, we give two complete classifications of the model parameter space: one is to compare the host disease prevalences with and without host dispersal, and the other is to determine the monotonicity of host disease prevalence with respect to host dispersal rate. Numerical simulations confirm inconsistence between disease persistence and host disease prevalence, as well as between host prevalence and vector prevalence in response to host movement. In general, a more uneven distribution of hosts and vectors in a homogeneous environment leads to lower host prevalence but higher vector prevalence and stronger disease persistence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信