{"title":"热/孔粘弹性模型的统一不连续伽辽金分析。","authors":"Stefano Bonetti, Mattia Corti","doi":"10.1007/s10915-025-03016-7","DOIUrl":null,"url":null,"abstract":"<p><p>We present and analyze a discontinuous Galerkin method for the numerical modeling of a Kelvin-Voigt thermo/poro-viscoelastic problem. We present the derivation of the model and we develop a stability analysis in the continuous setting that holds both for the full inertial and quasi-static problems and that is robust with respect to most of the physical parameters of the problem. For spatial discretization, we propose an arbitrary-order weighted symmetric interior penalty scheme that supports general polytopal grids and is robust with respect to strong heterogeneities in the model coefficients. For the semi-discrete problem, we prove the extension of the stability result demonstrated in the continuous setting and we provide an a-priori error estimate. A wide set of numerical simulations is presented to assess the convergence and robustness properties of the proposed method. Moreover, we test the scheme with literature and physically sound test cases for <i>proof-of-concept</i> applications in the geophysical context.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"105 1","pages":"11"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405049/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unified Discontinuous Galerkin Analysis of a Thermo/Poro-viscoelasticity Model.\",\"authors\":\"Stefano Bonetti, Mattia Corti\",\"doi\":\"10.1007/s10915-025-03016-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present and analyze a discontinuous Galerkin method for the numerical modeling of a Kelvin-Voigt thermo/poro-viscoelastic problem. We present the derivation of the model and we develop a stability analysis in the continuous setting that holds both for the full inertial and quasi-static problems and that is robust with respect to most of the physical parameters of the problem. For spatial discretization, we propose an arbitrary-order weighted symmetric interior penalty scheme that supports general polytopal grids and is robust with respect to strong heterogeneities in the model coefficients. For the semi-discrete problem, we prove the extension of the stability result demonstrated in the continuous setting and we provide an a-priori error estimate. A wide set of numerical simulations is presented to assess the convergence and robustness properties of the proposed method. Moreover, we test the scheme with literature and physically sound test cases for <i>proof-of-concept</i> applications in the geophysical context.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"105 1\",\"pages\":\"11\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405049/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-025-03016-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-025-03016-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Unified Discontinuous Galerkin Analysis of a Thermo/Poro-viscoelasticity Model.
We present and analyze a discontinuous Galerkin method for the numerical modeling of a Kelvin-Voigt thermo/poro-viscoelastic problem. We present the derivation of the model and we develop a stability analysis in the continuous setting that holds both for the full inertial and quasi-static problems and that is robust with respect to most of the physical parameters of the problem. For spatial discretization, we propose an arbitrary-order weighted symmetric interior penalty scheme that supports general polytopal grids and is robust with respect to strong heterogeneities in the model coefficients. For the semi-discrete problem, we prove the extension of the stability result demonstrated in the continuous setting and we provide an a-priori error estimate. A wide set of numerical simulations is presented to assess the convergence and robustness properties of the proposed method. Moreover, we test the scheme with literature and physically sound test cases for proof-of-concept applications in the geophysical context.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.