融合MRI和蛋白质组学的基于深度学习的LARC NAC反应多模态预测

IF 3.8 2区 医学 Q2 ONCOLOGY
Yan Li, Jiaxuan Ding, Fenqi Du, Zhongxing Wang, Zeyuan Liu, Yanlong Liu, Yang Zhou, Qiuju Zhang
{"title":"融合MRI和蛋白质组学的基于深度学习的LARC NAC反应多模态预测","authors":"Yan Li, Jiaxuan Ding, Fenqi Du, Zhongxing Wang, Zeyuan Liu, Yanlong Liu, Yang Zhou, Qiuju Zhang","doi":"10.4143/crt.2025.707","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Locally advanced rectal cancer (LARC) exhibits significant heterogeneity in response to neoadjuvant chemotherapy (NAC), with poor responders facing delayed treatment and unnecessary toxicity. Although MRI provides spatial pathophysiological information and proteomics reveals molecular mechanisms, current single-modal approaches cannot integrate these complementary perspectives, resulting in limited predictive accuracy and biological insight.</p><p><strong>Materials and methods: </strong>This retrospective study developed a multimodal deep learning framework using a cohort of 274 LARC patients treated with NAC (2012-2021). Graph neural networks analyzed proteomic profiles from FFPE tissues, incorporating KEGG/GO pathways and PPI networks, while a spatially enhanced 3D ResNet152 processed T2WI. A LightGBM classifier integrated both modalities with clinical features using zero-imputation for missing data. Model performance was assessed through AUC-ROC, decision curve analysis, and interpretability techniques (SHAP and Grad-CAM).</p><p><strong>Results: </strong>The integrated model achieved superior NAC response prediction (test AUC 0.828, sensitivity 0.875, specificity 0.750), significantly outperforming single-modal approaches (MRI ΔAUC +0.109; proteomics ΔAUC +0.125). SHAP analysis revealed MRI-derived features contributed 57.7% of predictive power, primarily through peritumoral stromal heterogeneity quantification. Proteomics identified 10 key chemoresistance proteins, including CYBA, GUSB, ATP6AP2, DYNC1I2, DAD1, ACOX1, COPG1, FBP1, DHRS7, and SSR3. Decision curve analysis confirmed clinical utility across threshold probabilities (0-0.75).</p><p><strong>Conclusion: </strong>Our study established a novel MRI-proteomics integration framework for NAC response prediction, with MRI defining spatial resistance patterns and proteomics deciphering molecular drivers, enabling early organ preservation strategies. The zero-imputation design ensured deplorability in diverse clinical settings.</p>","PeriodicalId":49094,"journal":{"name":"Cancer Research and Treatment","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Multimodal Prediction of NAC Response in LARC by Integrating MRI and Proteomics.\",\"authors\":\"Yan Li, Jiaxuan Ding, Fenqi Du, Zhongxing Wang, Zeyuan Liu, Yanlong Liu, Yang Zhou, Qiuju Zhang\",\"doi\":\"10.4143/crt.2025.707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Locally advanced rectal cancer (LARC) exhibits significant heterogeneity in response to neoadjuvant chemotherapy (NAC), with poor responders facing delayed treatment and unnecessary toxicity. Although MRI provides spatial pathophysiological information and proteomics reveals molecular mechanisms, current single-modal approaches cannot integrate these complementary perspectives, resulting in limited predictive accuracy and biological insight.</p><p><strong>Materials and methods: </strong>This retrospective study developed a multimodal deep learning framework using a cohort of 274 LARC patients treated with NAC (2012-2021). Graph neural networks analyzed proteomic profiles from FFPE tissues, incorporating KEGG/GO pathways and PPI networks, while a spatially enhanced 3D ResNet152 processed T2WI. A LightGBM classifier integrated both modalities with clinical features using zero-imputation for missing data. Model performance was assessed through AUC-ROC, decision curve analysis, and interpretability techniques (SHAP and Grad-CAM).</p><p><strong>Results: </strong>The integrated model achieved superior NAC response prediction (test AUC 0.828, sensitivity 0.875, specificity 0.750), significantly outperforming single-modal approaches (MRI ΔAUC +0.109; proteomics ΔAUC +0.125). SHAP analysis revealed MRI-derived features contributed 57.7% of predictive power, primarily through peritumoral stromal heterogeneity quantification. Proteomics identified 10 key chemoresistance proteins, including CYBA, GUSB, ATP6AP2, DYNC1I2, DAD1, ACOX1, COPG1, FBP1, DHRS7, and SSR3. Decision curve analysis confirmed clinical utility across threshold probabilities (0-0.75).</p><p><strong>Conclusion: </strong>Our study established a novel MRI-proteomics integration framework for NAC response prediction, with MRI defining spatial resistance patterns and proteomics deciphering molecular drivers, enabling early organ preservation strategies. The zero-imputation design ensured deplorability in diverse clinical settings.</p>\",\"PeriodicalId\":49094,\"journal\":{\"name\":\"Cancer Research and Treatment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Research and Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4143/crt.2025.707\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4143/crt.2025.707","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:局部晚期直肠癌(LARC)对新辅助化疗(NAC)的反应具有显著的异质性,反应不良者面临延迟治疗和不必要的毒性。尽管MRI提供了空间病理生理信息,蛋白质组学揭示了分子机制,但目前的单模态方法无法整合这些互补的观点,导致预测准确性和生物学洞察力有限。材料和方法:本回顾性研究使用274例接受NAC治疗的LARC患者(2012-2021)建立了一个多模式深度学习框架。图神经网络分析FFPE组织的蛋白质组学特征,结合KEGG/GO通路和PPI网络,而空间增强的3D ResNet152处理T2WI。LightGBM分类器集成了两种模式与临床特征,使用零输入缺失数据。通过AUC-ROC、决策曲线分析和可解释性技术(SHAP和Grad-CAM)评估模型的性能。结果:综合模型获得了更好的NAC反应预测(测试AUC 0.828,灵敏度0.875,特异性0.750),显著优于单模态方法(MRI ΔAUC +0.109;蛋白质组学ΔAUC +0.125)。SHAP分析显示,mri衍生的特征贡献了57.7%的预测能力,主要是通过肿瘤周围基质异质性量化。蛋白质组学鉴定出10个关键的化学耐药蛋白,包括CYBA、GUSB、ATP6AP2、DYNC1I2、DAD1、ACOX1、COPG1、FBP1、DHRS7和SSR3。决策曲线分析证实临床效用跨越阈值概率(0-0.75)。结论:我们的研究为NAC反应预测建立了一个新的MRI-蛋白质组学整合框架,MRI定义空间抵抗模式,蛋白质组学破译分子驱动因素,从而实现早期器官保存策略。零归责设计确保了在不同的临床环境中的可怜性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Multimodal Prediction of NAC Response in LARC by Integrating MRI and Proteomics.

Purpose: Locally advanced rectal cancer (LARC) exhibits significant heterogeneity in response to neoadjuvant chemotherapy (NAC), with poor responders facing delayed treatment and unnecessary toxicity. Although MRI provides spatial pathophysiological information and proteomics reveals molecular mechanisms, current single-modal approaches cannot integrate these complementary perspectives, resulting in limited predictive accuracy and biological insight.

Materials and methods: This retrospective study developed a multimodal deep learning framework using a cohort of 274 LARC patients treated with NAC (2012-2021). Graph neural networks analyzed proteomic profiles from FFPE tissues, incorporating KEGG/GO pathways and PPI networks, while a spatially enhanced 3D ResNet152 processed T2WI. A LightGBM classifier integrated both modalities with clinical features using zero-imputation for missing data. Model performance was assessed through AUC-ROC, decision curve analysis, and interpretability techniques (SHAP and Grad-CAM).

Results: The integrated model achieved superior NAC response prediction (test AUC 0.828, sensitivity 0.875, specificity 0.750), significantly outperforming single-modal approaches (MRI ΔAUC +0.109; proteomics ΔAUC +0.125). SHAP analysis revealed MRI-derived features contributed 57.7% of predictive power, primarily through peritumoral stromal heterogeneity quantification. Proteomics identified 10 key chemoresistance proteins, including CYBA, GUSB, ATP6AP2, DYNC1I2, DAD1, ACOX1, COPG1, FBP1, DHRS7, and SSR3. Decision curve analysis confirmed clinical utility across threshold probabilities (0-0.75).

Conclusion: Our study established a novel MRI-proteomics integration framework for NAC response prediction, with MRI defining spatial resistance patterns and proteomics deciphering molecular drivers, enabling early organ preservation strategies. The zero-imputation design ensured deplorability in diverse clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
126
审稿时长
>12 weeks
期刊介绍: Cancer Research and Treatment is a peer-reviewed open access publication of the Korean Cancer Association. It is published quarterly, one volume per year. Abbreviated title is Cancer Res Treat. It accepts manuscripts relevant to experimental and clinical cancer research. Subjects include carcinogenesis, tumor biology, molecular oncology, cancer genetics, tumor immunology, epidemiology, predictive markers and cancer prevention, pathology, cancer diagnosis, screening and therapies including chemotherapy, surgery, radiation therapy, immunotherapy, gene therapy, multimodality treatment and palliative care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信