酿酒酵母线粒体动力学的分子机制及其生理作用。

IF 3.9 3区 生物学 Q2 CELL BIOLOGY
Microbial Cell Pub Date : 2025-08-27 eCollection Date: 2025-01-01 DOI:10.15698/mic2025.08.859
Chang-Lin Chen, Wei-Ling Huang, Alexander Rapoport, Rimantas Daugelavičius, Chuang-Rung Chang
{"title":"酿酒酵母线粒体动力学的分子机制及其生理作用。","authors":"Chang-Lin Chen, Wei-Ling Huang, Alexander Rapoport, Rimantas Daugelavičius, Chuang-Rung Chang","doi":"10.15698/mic2025.08.859","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are essential organelles that form a dynamic network within cells. The fusion, fission, and transport processes among mitochondria must reach a balance, which is achieved through complex regulatory mechanisms. These dynamic processes and regulatory pathways are highly conserved across species and are coordinated to help cells respond to environmental stress. The budding yeast <i>Saccharomyces cerevisiae</i> has become an important model organism for studying mitochondria dynamics due to its genetic tractability and the conservation of key mitochondrial regulators. Previous research on mitochondria dynamics in yeast has provided valuable insights into the regulatory pathways in eukaryotic cells. It has helped to elucidate the mechanisms related to diseases associated with disrupted mitochondria dynamics. This review explores the molecular mechanisms underlying mitochondria dynamics and their physiological roles in <i>Saccharomyces cerevisiae</i>. The knowledge we learned from the primary eukaryotic yeast cell will aid us in advancing future research on the regulatory mechanisms of mitochondria in both health and disease.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"242-254"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407545/pdf/","citationCount":"0","resultStr":"{\"title\":\"The molecular mechanisms and physiological roles of mitochondria dynamics in <i>Saccharomyces cerevisiae</i>.\",\"authors\":\"Chang-Lin Chen, Wei-Ling Huang, Alexander Rapoport, Rimantas Daugelavičius, Chuang-Rung Chang\",\"doi\":\"10.15698/mic2025.08.859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are essential organelles that form a dynamic network within cells. The fusion, fission, and transport processes among mitochondria must reach a balance, which is achieved through complex regulatory mechanisms. These dynamic processes and regulatory pathways are highly conserved across species and are coordinated to help cells respond to environmental stress. The budding yeast <i>Saccharomyces cerevisiae</i> has become an important model organism for studying mitochondria dynamics due to its genetic tractability and the conservation of key mitochondrial regulators. Previous research on mitochondria dynamics in yeast has provided valuable insights into the regulatory pathways in eukaryotic cells. It has helped to elucidate the mechanisms related to diseases associated with disrupted mitochondria dynamics. This review explores the molecular mechanisms underlying mitochondria dynamics and their physiological roles in <i>Saccharomyces cerevisiae</i>. The knowledge we learned from the primary eukaryotic yeast cell will aid us in advancing future research on the regulatory mechanisms of mitochondria in both health and disease.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":\"12 \",\"pages\":\"242-254\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407545/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2025.08.859\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2025.08.859","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体是细胞内形成动态网络的重要细胞器。线粒体之间的融合、裂变和转运过程必须达到平衡,这是通过复杂的调控机制实现的。这些动态过程和调控途径在物种间高度保守,并相互协调以帮助细胞应对环境压力。出芽酵母酵母(Saccharomyces cerevisiae)由于其遗传易变性和线粒体关键调控因子的保守性,已成为研究线粒体动力学的重要模式生物。以前对酵母线粒体动力学的研究为真核细胞的调控途径提供了有价值的见解。它有助于阐明与线粒体动力学中断相关的疾病的相关机制。本文综述了酿酒酵母线粒体动力学的分子机制及其生理作用。我们从原代真核酵母细胞中学到的知识将有助于我们推进线粒体在健康和疾病中的调节机制的未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The molecular mechanisms and physiological roles of mitochondria dynamics in <i>Saccharomyces cerevisiae</i>.

The molecular mechanisms and physiological roles of mitochondria dynamics in <i>Saccharomyces cerevisiae</i>.

The molecular mechanisms and physiological roles of mitochondria dynamics in <i>Saccharomyces cerevisiae</i>.

The molecular mechanisms and physiological roles of mitochondria dynamics in Saccharomyces cerevisiae.

Mitochondria are essential organelles that form a dynamic network within cells. The fusion, fission, and transport processes among mitochondria must reach a balance, which is achieved through complex regulatory mechanisms. These dynamic processes and regulatory pathways are highly conserved across species and are coordinated to help cells respond to environmental stress. The budding yeast Saccharomyces cerevisiae has become an important model organism for studying mitochondria dynamics due to its genetic tractability and the conservation of key mitochondrial regulators. Previous research on mitochondria dynamics in yeast has provided valuable insights into the regulatory pathways in eukaryotic cells. It has helped to elucidate the mechanisms related to diseases associated with disrupted mitochondria dynamics. This review explores the molecular mechanisms underlying mitochondria dynamics and their physiological roles in Saccharomyces cerevisiae. The knowledge we learned from the primary eukaryotic yeast cell will aid us in advancing future research on the regulatory mechanisms of mitochondria in both health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信