{"title":"控制植物病原体的天然产物的生物有机化学。","authors":"Arata Yajima","doi":"10.1584/jpestics.J25-03","DOIUrl":null,"url":null,"abstract":"<p><p>Developing new agrochemicals is essential for sustainable agriculture and global food security. Our group focused on natural products that control plant pathogens, conducting synthetic research across three key areas of interest: antimicrobial compounds, phytoalexins, and microbial signaling molecules. We established new methods for producing chiral allylic alcohols as useful synthetic intermediates for natural product synthesis <i>via</i> the enantioselective synthesis of antimicrobial agents such as peniciaculins. In the phytoalexin research, the synthesis of biosynthetic intermediates enabled the elucidation of enzyme functions in terms of their biosynthesis and the confirmation of absolute configurations, deepening our understanding of plant defense systems. Furthermore, the total synthesis and biosynthetic studies of <i>Phytophthora</i> mating hormones revealed a unique chemical relay system regulating sexual reproduction. These findings emphasize the importance of synthetic chemistry in advancing natural product research and offer new strategies for crop protection. Our interdisciplinary approach paves the way for future innovations in combating agricultural pests and diseases.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"50 3","pages":"87-95"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405012/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioorganic chemistry of natural products that control plant pathogens.\",\"authors\":\"Arata Yajima\",\"doi\":\"10.1584/jpestics.J25-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing new agrochemicals is essential for sustainable agriculture and global food security. Our group focused on natural products that control plant pathogens, conducting synthetic research across three key areas of interest: antimicrobial compounds, phytoalexins, and microbial signaling molecules. We established new methods for producing chiral allylic alcohols as useful synthetic intermediates for natural product synthesis <i>via</i> the enantioselective synthesis of antimicrobial agents such as peniciaculins. In the phytoalexin research, the synthesis of biosynthetic intermediates enabled the elucidation of enzyme functions in terms of their biosynthesis and the confirmation of absolute configurations, deepening our understanding of plant defense systems. Furthermore, the total synthesis and biosynthetic studies of <i>Phytophthora</i> mating hormones revealed a unique chemical relay system regulating sexual reproduction. These findings emphasize the importance of synthetic chemistry in advancing natural product research and offer new strategies for crop protection. Our interdisciplinary approach paves the way for future innovations in combating agricultural pests and diseases.</p>\",\"PeriodicalId\":16712,\"journal\":{\"name\":\"Journal of Pesticide Science\",\"volume\":\"50 3\",\"pages\":\"87-95\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405012/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pesticide Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1584/jpestics.J25-03\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1584/jpestics.J25-03","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Bioorganic chemistry of natural products that control plant pathogens.
Developing new agrochemicals is essential for sustainable agriculture and global food security. Our group focused on natural products that control plant pathogens, conducting synthetic research across three key areas of interest: antimicrobial compounds, phytoalexins, and microbial signaling molecules. We established new methods for producing chiral allylic alcohols as useful synthetic intermediates for natural product synthesis via the enantioselective synthesis of antimicrobial agents such as peniciaculins. In the phytoalexin research, the synthesis of biosynthetic intermediates enabled the elucidation of enzyme functions in terms of their biosynthesis and the confirmation of absolute configurations, deepening our understanding of plant defense systems. Furthermore, the total synthesis and biosynthetic studies of Phytophthora mating hormones revealed a unique chemical relay system regulating sexual reproduction. These findings emphasize the importance of synthetic chemistry in advancing natural product research and offer new strategies for crop protection. Our interdisciplinary approach paves the way for future innovations in combating agricultural pests and diseases.
期刊介绍:
The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.