Eman El-Khateeb, Deeyen Karsanji, Adam S Darwich, Amin Rostami-Hodjegan
{"title":"浓度依赖性血液结合:以他克莫司为例,通过基于生理的药代动力学模型评估其影响。","authors":"Eman El-Khateeb, Deeyen Karsanji, Adam S Darwich, Amin Rostami-Hodjegan","doi":"10.1007/s10928-025-09992-5","DOIUrl":null,"url":null,"abstract":"<p><p>Concentration-dependent binding to red blood cells is a characteristic of several drugs, complicating the understanding of how pathophysiological factors influence drug behavior. This study utilized user-friendly, physiologically-based pharmacokinetic (PBPK) models to compare concentration-dependent and independent blood-to-plasma drug concentration ratios (B/P), using tacrolimus as a case study. Two models were developed and validated for tacrolimus using clinical data from healthy volunteers; Model 1 accounted for saturable blood binding, and Model 2 used a constant B/P level. The differences between the two models based on the two binding assumptions were also studied across clinically relevant hematocrit (HCT) and dose levels. For intravenous (IV) infusions, varying HCT from 15 to 45% resulted in a predicted difference in the area under the concentration-time curve (AUC) of 6-9% for total drug concentration in blood and 37-39% for unbound drug concentration in plasma. Increasing IV doses increased the predicted differences in blood AUC. For oral dosing to steady state, predicted differences in trough concentrations ranged between 50% and 130%, peak concentrations (78-284%), and AUC (up to 125%) according to HCT, dose, and biological medium, e.g., trough differences ranged from 50% (blood, 5 mg) to 130% (plasma, 10 mg). A hypothetical scenario of tacrolimus dose levels increasing above clinically relevant doses revealed a reducing difference in outcomes between the two binding assumptions. Although PBPK models ignoring concentration-dependent binding may adequately fit observed data, they can necessitate compensatory adjustments in disposition parameters, limiting their ability to predict clinical scenarios beyond the model's original development settings.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 5","pages":"50"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration-dependent blood binding: assessing implications through physiologically based Pharmacokinetic modeling of tacrolimus as a case example.\",\"authors\":\"Eman El-Khateeb, Deeyen Karsanji, Adam S Darwich, Amin Rostami-Hodjegan\",\"doi\":\"10.1007/s10928-025-09992-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Concentration-dependent binding to red blood cells is a characteristic of several drugs, complicating the understanding of how pathophysiological factors influence drug behavior. This study utilized user-friendly, physiologically-based pharmacokinetic (PBPK) models to compare concentration-dependent and independent blood-to-plasma drug concentration ratios (B/P), using tacrolimus as a case study. Two models were developed and validated for tacrolimus using clinical data from healthy volunteers; Model 1 accounted for saturable blood binding, and Model 2 used a constant B/P level. The differences between the two models based on the two binding assumptions were also studied across clinically relevant hematocrit (HCT) and dose levels. For intravenous (IV) infusions, varying HCT from 15 to 45% resulted in a predicted difference in the area under the concentration-time curve (AUC) of 6-9% for total drug concentration in blood and 37-39% for unbound drug concentration in plasma. Increasing IV doses increased the predicted differences in blood AUC. For oral dosing to steady state, predicted differences in trough concentrations ranged between 50% and 130%, peak concentrations (78-284%), and AUC (up to 125%) according to HCT, dose, and biological medium, e.g., trough differences ranged from 50% (blood, 5 mg) to 130% (plasma, 10 mg). A hypothetical scenario of tacrolimus dose levels increasing above clinically relevant doses revealed a reducing difference in outcomes between the two binding assumptions. Although PBPK models ignoring concentration-dependent binding may adequately fit observed data, they can necessitate compensatory adjustments in disposition parameters, limiting their ability to predict clinical scenarios beyond the model's original development settings.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"52 5\",\"pages\":\"50\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-025-09992-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09992-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Concentration-dependent blood binding: assessing implications through physiologically based Pharmacokinetic modeling of tacrolimus as a case example.
Concentration-dependent binding to red blood cells is a characteristic of several drugs, complicating the understanding of how pathophysiological factors influence drug behavior. This study utilized user-friendly, physiologically-based pharmacokinetic (PBPK) models to compare concentration-dependent and independent blood-to-plasma drug concentration ratios (B/P), using tacrolimus as a case study. Two models were developed and validated for tacrolimus using clinical data from healthy volunteers; Model 1 accounted for saturable blood binding, and Model 2 used a constant B/P level. The differences between the two models based on the two binding assumptions were also studied across clinically relevant hematocrit (HCT) and dose levels. For intravenous (IV) infusions, varying HCT from 15 to 45% resulted in a predicted difference in the area under the concentration-time curve (AUC) of 6-9% for total drug concentration in blood and 37-39% for unbound drug concentration in plasma. Increasing IV doses increased the predicted differences in blood AUC. For oral dosing to steady state, predicted differences in trough concentrations ranged between 50% and 130%, peak concentrations (78-284%), and AUC (up to 125%) according to HCT, dose, and biological medium, e.g., trough differences ranged from 50% (blood, 5 mg) to 130% (plasma, 10 mg). A hypothetical scenario of tacrolimus dose levels increasing above clinically relevant doses revealed a reducing difference in outcomes between the two binding assumptions. Although PBPK models ignoring concentration-dependent binding may adequately fit observed data, they can necessitate compensatory adjustments in disposition parameters, limiting their ability to predict clinical scenarios beyond the model's original development settings.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.