{"title":"油籽植物修复重金属污染土壤中微生物群落的响应","authors":"Guowei Zhang, Yihong Yue, Li Tu, Qunlu Liu, Qian Zhang, Kankan Shang","doi":"10.1093/jambio/lxaf226","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Phytoremediation is an effective method of remediating soils contaminated with heavy metals. However, it has some limitations in practical applications with regard to rare plant species, poor environmental adaptability, and long growth cycles. The dynamic response mechanisms of soil microbial communities during phytoremediation are still unclear, which restricts the optimization and promotion of this approach.</p><p><strong>Methods and results: </strong>No ethical approval was required for this study. In this study, soil bacterial, fungal, and archaeal communities during the remediation of Cu-, Pb-, and Zn-contaminated soils with five industrial oilseed plants [Xanthium strumarium (XS), Bidens pilosa (BP), Kosteletzkya virginica (KV), Sesbania cannabina (SC), and Commelina communis (CC)] were analyzed using metagenome sequencing. Compared with soil contaminated with heavy metals, remediation through five industrial oilseed plants significantly reduced the content of heavy metals in the soil, with soil Cu, Pb, and Zn decreasing by 44.01%, 46.32%, and 27.62%, respectively, and WSCu, WSPb, and WSZn content decreasing by 28.23%, 50.68%, and 75.26%, respectively. Microbial diversity analysis showed that the phytoremediation significantly affected the soil microbial communities, with a significant decrease in archaeal diversity. Variation partitioning analysis and Mantel tests revealed that heavy metals and soil physicochemical properties significantly affected microbial communities, and heavy metals exerted stronger effects on archaeal communities. Meanwhile, soil contaminated with heavy metals was mainly dominated by fungal-fungal interactions, whereas phytoremediation increased the complexity of microbial symbiotic networks.</p><p><strong>Conclusion: </strong>Collectively, these results provide fundamental insights into the microbial community structure during phytoremediation of heavy metal-contaminated soil, which may aid in the bioregulation of phytoremediation.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of microbial communities during oilseed plant-based phytoremediation of heavy metal-contaminated soils.\",\"authors\":\"Guowei Zhang, Yihong Yue, Li Tu, Qunlu Liu, Qian Zhang, Kankan Shang\",\"doi\":\"10.1093/jambio/lxaf226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Phytoremediation is an effective method of remediating soils contaminated with heavy metals. However, it has some limitations in practical applications with regard to rare plant species, poor environmental adaptability, and long growth cycles. The dynamic response mechanisms of soil microbial communities during phytoremediation are still unclear, which restricts the optimization and promotion of this approach.</p><p><strong>Methods and results: </strong>No ethical approval was required for this study. In this study, soil bacterial, fungal, and archaeal communities during the remediation of Cu-, Pb-, and Zn-contaminated soils with five industrial oilseed plants [Xanthium strumarium (XS), Bidens pilosa (BP), Kosteletzkya virginica (KV), Sesbania cannabina (SC), and Commelina communis (CC)] were analyzed using metagenome sequencing. Compared with soil contaminated with heavy metals, remediation through five industrial oilseed plants significantly reduced the content of heavy metals in the soil, with soil Cu, Pb, and Zn decreasing by 44.01%, 46.32%, and 27.62%, respectively, and WSCu, WSPb, and WSZn content decreasing by 28.23%, 50.68%, and 75.26%, respectively. Microbial diversity analysis showed that the phytoremediation significantly affected the soil microbial communities, with a significant decrease in archaeal diversity. Variation partitioning analysis and Mantel tests revealed that heavy metals and soil physicochemical properties significantly affected microbial communities, and heavy metals exerted stronger effects on archaeal communities. Meanwhile, soil contaminated with heavy metals was mainly dominated by fungal-fungal interactions, whereas phytoremediation increased the complexity of microbial symbiotic networks.</p><p><strong>Conclusion: </strong>Collectively, these results provide fundamental insights into the microbial community structure during phytoremediation of heavy metal-contaminated soil, which may aid in the bioregulation of phytoremediation.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxaf226\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf226","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Responses of microbial communities during oilseed plant-based phytoremediation of heavy metal-contaminated soils.
Aims: Phytoremediation is an effective method of remediating soils contaminated with heavy metals. However, it has some limitations in practical applications with regard to rare plant species, poor environmental adaptability, and long growth cycles. The dynamic response mechanisms of soil microbial communities during phytoremediation are still unclear, which restricts the optimization and promotion of this approach.
Methods and results: No ethical approval was required for this study. In this study, soil bacterial, fungal, and archaeal communities during the remediation of Cu-, Pb-, and Zn-contaminated soils with five industrial oilseed plants [Xanthium strumarium (XS), Bidens pilosa (BP), Kosteletzkya virginica (KV), Sesbania cannabina (SC), and Commelina communis (CC)] were analyzed using metagenome sequencing. Compared with soil contaminated with heavy metals, remediation through five industrial oilseed plants significantly reduced the content of heavy metals in the soil, with soil Cu, Pb, and Zn decreasing by 44.01%, 46.32%, and 27.62%, respectively, and WSCu, WSPb, and WSZn content decreasing by 28.23%, 50.68%, and 75.26%, respectively. Microbial diversity analysis showed that the phytoremediation significantly affected the soil microbial communities, with a significant decrease in archaeal diversity. Variation partitioning analysis and Mantel tests revealed that heavy metals and soil physicochemical properties significantly affected microbial communities, and heavy metals exerted stronger effects on archaeal communities. Meanwhile, soil contaminated with heavy metals was mainly dominated by fungal-fungal interactions, whereas phytoremediation increased the complexity of microbial symbiotic networks.
Conclusion: Collectively, these results provide fundamental insights into the microbial community structure during phytoremediation of heavy metal-contaminated soil, which may aid in the bioregulation of phytoremediation.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.