计算非绝热质子耦合电子转移速率常数的教程。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Phillips Hutchison, Kai Cui, Jiayun Zhong, Sharon Hammes-Schiffer
{"title":"计算非绝热质子耦合电子转移速率常数的教程。","authors":"Phillips Hutchison, Kai Cui, Jiayun Zhong, Sharon Hammes-Schiffer","doi":"10.1063/5.0284337","DOIUrl":null,"url":null,"abstract":"<p><p>Proton-coupled electron transfer (PCET) is pervasive throughout chemistry, biology, and physics. Over the last few decades, we have developed a general theoretical formulation for PCET that includes the quantum mechanical effects of the electrons and transferring protons, including hydrogen tunneling, as well as the reorganization of the environment and the donor-acceptor fluctuations. Analytical rate constants have been derived in various well-defined regimes. This Tutorial focuses on the vibronically nonadiabatic regime, in which a golden rule rate constant expression is applicable. The goal is to provide detailed instructions on how to compute the input quantities to this rate constant expression for PCET in molecules, proteins, and electrochemical systems. The required input quantities are the inner-sphere and outer-sphere reorganization energies, the diabatic proton potential energy profiles, the electronic coupling, the reaction free energy, and the proton donor-acceptor distance distribution function. Instructions on how to determine the degree of electron-proton nonadiabaticity, which is important for determining the form of the vibronic coupling, are also provided. Detailed examples are given for thermal enzymatic PCET, homogeneous molecular electrochemical PCET, photochemical molecular PCET, and heterogeneous electrochemical PCET. A Python-based package, pyPCET, for computing nonadiabatic PCET rate constants, along with example scripts, input data, output files, and detailed documentation, is publicly available.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tutorial on computing nonadiabatic proton-coupled electron transfer rate constants.\",\"authors\":\"Phillips Hutchison, Kai Cui, Jiayun Zhong, Sharon Hammes-Schiffer\",\"doi\":\"10.1063/5.0284337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proton-coupled electron transfer (PCET) is pervasive throughout chemistry, biology, and physics. Over the last few decades, we have developed a general theoretical formulation for PCET that includes the quantum mechanical effects of the electrons and transferring protons, including hydrogen tunneling, as well as the reorganization of the environment and the donor-acceptor fluctuations. Analytical rate constants have been derived in various well-defined regimes. This Tutorial focuses on the vibronically nonadiabatic regime, in which a golden rule rate constant expression is applicable. The goal is to provide detailed instructions on how to compute the input quantities to this rate constant expression for PCET in molecules, proteins, and electrochemical systems. The required input quantities are the inner-sphere and outer-sphere reorganization energies, the diabatic proton potential energy profiles, the electronic coupling, the reaction free energy, and the proton donor-acceptor distance distribution function. Instructions on how to determine the degree of electron-proton nonadiabaticity, which is important for determining the form of the vibronic coupling, are also provided. Detailed examples are given for thermal enzymatic PCET, homogeneous molecular electrochemical PCET, photochemical molecular PCET, and heterogeneous electrochemical PCET. A Python-based package, pyPCET, for computing nonadiabatic PCET rate constants, along with example scripts, input data, output files, and detailed documentation, is publicly available.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"163 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0284337\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0284337","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

质子耦合电子转移(PCET)在化学、生物学和物理学中普遍存在。在过去的几十年里,我们已经为PCET开发了一个通用的理论公式,其中包括电子和转移质子的量子力学效应,包括氢隧穿,以及环境的重组和供体-受体波动。在各种定义良好的体系中推导出了解析速率常数。本教程的重点是振动非绝热状态,其中黄金法则速率常数表达式是适用的。目标是提供详细说明如何计算PCET在分子,蛋白质和电化学系统中的速率常数表达式的输入量。所需的输入量为内球和外球重组能、非绝热质子势能分布、电子耦合、反应自由能和质子供体-受体距离分布函数。还提供了如何确定电子-质子非绝热度的说明,这对确定振动耦合的形式很重要。给出了热酶法PCET、均相分子电化学PCET、光化学分子PCET和非均相电化学PCET的详细实例。用于计算非绝热PCET速率常数的基于python的包pyPCET以及示例脚本、输入数据、输出文件和详细文档都是公开可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tutorial on computing nonadiabatic proton-coupled electron transfer rate constants.

Proton-coupled electron transfer (PCET) is pervasive throughout chemistry, biology, and physics. Over the last few decades, we have developed a general theoretical formulation for PCET that includes the quantum mechanical effects of the electrons and transferring protons, including hydrogen tunneling, as well as the reorganization of the environment and the donor-acceptor fluctuations. Analytical rate constants have been derived in various well-defined regimes. This Tutorial focuses on the vibronically nonadiabatic regime, in which a golden rule rate constant expression is applicable. The goal is to provide detailed instructions on how to compute the input quantities to this rate constant expression for PCET in molecules, proteins, and electrochemical systems. The required input quantities are the inner-sphere and outer-sphere reorganization energies, the diabatic proton potential energy profiles, the electronic coupling, the reaction free energy, and the proton donor-acceptor distance distribution function. Instructions on how to determine the degree of electron-proton nonadiabaticity, which is important for determining the form of the vibronic coupling, are also provided. Detailed examples are given for thermal enzymatic PCET, homogeneous molecular electrochemical PCET, photochemical molecular PCET, and heterogeneous electrochemical PCET. A Python-based package, pyPCET, for computing nonadiabatic PCET rate constants, along with example scripts, input data, output files, and detailed documentation, is publicly available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信