Yuming Ding, Linmei Gao, Yi Chen, Yanheng Qiao, Bo Yang
{"title":"急性肾损伤小管周围毛细血管新生的分子机制及治疗进展。","authors":"Yuming Ding, Linmei Gao, Yi Chen, Yanheng Qiao, Bo Yang","doi":"10.3389/fmolb.2025.1643838","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury is a clinical syndrome characterized by a rapid decline in renal function, driven by pathological mechanisms such as renal tubular epithelial cell injury, inflammatory responses, and microcirculatory dysfunction. In recent years, the role of angiogenesis in AKI recovery and regeneration has gained increasing attention. Angiogenesis plays a dual role in tissue repair and pathological remodeling, exhibiting complex spatiotemporal dynamics during AKI progression. This review synthesizes recent advances in understanding the role of angiogenesis in AKI, with the aim of identifying potential diagnostic and therapeutic strategies. Studies indicate that the ischemic-hypoxic microenvironment following AKI activates key signaling pathways, including hypoxia-inducible factor-1α, which subsequently upregulates vascular endothelial growth factor and angiopoietins, thereby modulating intrarenal angiogenesis. Controlled angiogenesis may enhance regional perfusion, mitigate hypoxic injury, and facilitate tubular repair, whereas excessive or dysregulated angiogenesis can contribute to maladaptive vascular remodeling and fibrotic progression. Current research efforts focus on therapeutic strategies aimed at modulating angiogenesis, such as exogenous VEGF administration, endothelial progenitor cell transplantation, and Notch signaling modulation, to promote functional vascular regeneration. However, the precise role of angiogenesis varies across different AKI phases (acute vs recovery), and its interactions with inflammatory and fibrotic pathways remain incompletely understood. Further elucidation of these mechanisms is essential for developing targeted therapeutic interventions.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1643838"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404958/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms and therapeutic advances of peritubular capillary neogenesis in acute kidney injury.\",\"authors\":\"Yuming Ding, Linmei Gao, Yi Chen, Yanheng Qiao, Bo Yang\",\"doi\":\"10.3389/fmolb.2025.1643838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute kidney injury is a clinical syndrome characterized by a rapid decline in renal function, driven by pathological mechanisms such as renal tubular epithelial cell injury, inflammatory responses, and microcirculatory dysfunction. In recent years, the role of angiogenesis in AKI recovery and regeneration has gained increasing attention. Angiogenesis plays a dual role in tissue repair and pathological remodeling, exhibiting complex spatiotemporal dynamics during AKI progression. This review synthesizes recent advances in understanding the role of angiogenesis in AKI, with the aim of identifying potential diagnostic and therapeutic strategies. Studies indicate that the ischemic-hypoxic microenvironment following AKI activates key signaling pathways, including hypoxia-inducible factor-1α, which subsequently upregulates vascular endothelial growth factor and angiopoietins, thereby modulating intrarenal angiogenesis. Controlled angiogenesis may enhance regional perfusion, mitigate hypoxic injury, and facilitate tubular repair, whereas excessive or dysregulated angiogenesis can contribute to maladaptive vascular remodeling and fibrotic progression. Current research efforts focus on therapeutic strategies aimed at modulating angiogenesis, such as exogenous VEGF administration, endothelial progenitor cell transplantation, and Notch signaling modulation, to promote functional vascular regeneration. However, the precise role of angiogenesis varies across different AKI phases (acute vs recovery), and its interactions with inflammatory and fibrotic pathways remain incompletely understood. Further elucidation of these mechanisms is essential for developing targeted therapeutic interventions.</p>\",\"PeriodicalId\":12465,\"journal\":{\"name\":\"Frontiers in Molecular Biosciences\",\"volume\":\"12 \",\"pages\":\"1643838\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404958/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmolb.2025.1643838\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1643838","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular mechanisms and therapeutic advances of peritubular capillary neogenesis in acute kidney injury.
Acute kidney injury is a clinical syndrome characterized by a rapid decline in renal function, driven by pathological mechanisms such as renal tubular epithelial cell injury, inflammatory responses, and microcirculatory dysfunction. In recent years, the role of angiogenesis in AKI recovery and regeneration has gained increasing attention. Angiogenesis plays a dual role in tissue repair and pathological remodeling, exhibiting complex spatiotemporal dynamics during AKI progression. This review synthesizes recent advances in understanding the role of angiogenesis in AKI, with the aim of identifying potential diagnostic and therapeutic strategies. Studies indicate that the ischemic-hypoxic microenvironment following AKI activates key signaling pathways, including hypoxia-inducible factor-1α, which subsequently upregulates vascular endothelial growth factor and angiopoietins, thereby modulating intrarenal angiogenesis. Controlled angiogenesis may enhance regional perfusion, mitigate hypoxic injury, and facilitate tubular repair, whereas excessive or dysregulated angiogenesis can contribute to maladaptive vascular remodeling and fibrotic progression. Current research efforts focus on therapeutic strategies aimed at modulating angiogenesis, such as exogenous VEGF administration, endothelial progenitor cell transplantation, and Notch signaling modulation, to promote functional vascular regeneration. However, the precise role of angiogenesis varies across different AKI phases (acute vs recovery), and its interactions with inflammatory and fibrotic pathways remain incompletely understood. Further elucidation of these mechanisms is essential for developing targeted therapeutic interventions.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.