Fmr1基因敲除通过降低中背丘脑皮层神经元的HCN通道活性来破坏多种内在特性。

IF 2.8 4区 医学 Q2 PHYSIOLOGY
Gregory J Ordemann, Polina Lyuboslavsky, Alena Kizimenko, Audrey C Brumback
{"title":"Fmr1基因敲除通过降低中背丘脑皮层神经元的HCN通道活性来破坏多种内在特性。","authors":"Gregory J Ordemann, Polina Lyuboslavsky, Alena Kizimenko, Audrey C Brumback","doi":"10.1113/EP092894","DOIUrl":null,"url":null,"abstract":"<p><p>The neurodevelopmental disorder fragile X syndrome (FXS) results from hypermethylation of the FMR1 gene, which prevents production of the FMRP protein. FMRP modulates the expression and function of a variety of proteins, including voltage-gated ion channels, such as hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, which are integral to rhythmic activity in thalamic structures. Thalamocortical pathology, particularly involving the mediodorsal thalamus (MD), has been implicated in neurodevelopmental disorders such as FXS. MD connectivity with the medial prefrontal cortex (mPFC) is integral to executive functions such as working memory and social behaviours that are disrupted in FXS. We used a combination of retrograde labelling and ex vivo brain slice whole-cell electrophysiology in 40 wild-type and 42 Fmr1 knockout male mice to investigate how a lack of Fmr1 affects intrinsic cellular properties in lateral (MD-L) and medial (MD-M) MD neurons that project to the mPFC (MD→mPFC neurons). In MD-L neurons, Fmr1 knockout decreased the HCN-mediated membrane properties voltage sag and membrane after-hyperpolarization. We also identified a delay in rebound spike timing in both complex bursts and low-threshold spikes. In Fmr1 knockout mice, reduced HCN channel activity in MD-L→mPFC neurons impaired both the timing and the magnitude of HCN-mediated membrane potential regulation. Changes in response timing might adversely affect rhythm propagation in Fmr1 KO thalamocortical circuitry. MD thalamic neurons are crucial for maintaining rhythmic activity involved in cognitive and affective functions. Understanding specific mechanisms of thalamocortical circuit activity might lead to therapeutic interventions for individuals with FXS and other conditions characterized by thalamic dysrhythmia.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fmr1 knockout disrupts multiple intrinsic properties via reduced HCN channel activity in mediodorsal thalamocortical neurons.\",\"authors\":\"Gregory J Ordemann, Polina Lyuboslavsky, Alena Kizimenko, Audrey C Brumback\",\"doi\":\"10.1113/EP092894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neurodevelopmental disorder fragile X syndrome (FXS) results from hypermethylation of the FMR1 gene, which prevents production of the FMRP protein. FMRP modulates the expression and function of a variety of proteins, including voltage-gated ion channels, such as hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, which are integral to rhythmic activity in thalamic structures. Thalamocortical pathology, particularly involving the mediodorsal thalamus (MD), has been implicated in neurodevelopmental disorders such as FXS. MD connectivity with the medial prefrontal cortex (mPFC) is integral to executive functions such as working memory and social behaviours that are disrupted in FXS. We used a combination of retrograde labelling and ex vivo brain slice whole-cell electrophysiology in 40 wild-type and 42 Fmr1 knockout male mice to investigate how a lack of Fmr1 affects intrinsic cellular properties in lateral (MD-L) and medial (MD-M) MD neurons that project to the mPFC (MD→mPFC neurons). In MD-L neurons, Fmr1 knockout decreased the HCN-mediated membrane properties voltage sag and membrane after-hyperpolarization. We also identified a delay in rebound spike timing in both complex bursts and low-threshold spikes. In Fmr1 knockout mice, reduced HCN channel activity in MD-L→mPFC neurons impaired both the timing and the magnitude of HCN-mediated membrane potential regulation. Changes in response timing might adversely affect rhythm propagation in Fmr1 KO thalamocortical circuitry. MD thalamic neurons are crucial for maintaining rhythmic activity involved in cognitive and affective functions. Understanding specific mechanisms of thalamocortical circuit activity might lead to therapeutic interventions for individuals with FXS and other conditions characterized by thalamic dysrhythmia.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092894\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092894","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经发育障碍脆性X综合征(FXS)是由FMR1基因的高甲基化引起的,这阻止了FMRP蛋白的产生。FMRP调节多种蛋白质的表达和功能,包括电压门控离子通道,如超极化激活和环核苷酸门控(HCN)通道,它们是丘脑结构节律性活动的组成部分。丘脑皮质病理,特别是涉及丘脑中背侧(MD),已涉及神经发育障碍,如FXS。MD与内侧前额叶皮层(mPFC)的连接是FXS中断的工作记忆和社会行为等执行功能不可或缺的一部分。我们在40只野生型和42只Fmr1基因敲除的雄性小鼠中使用逆行标记和离体脑切片全细胞电生理相结合的方法来研究Fmr1缺失如何影响投射到mPFC (MD→mPFC神经元)的外侧(MD- l)和内侧(MD- m) MD神经元的内在细胞特性。在MD-L神经元中,Fmr1敲除降低了hcn介导的膜特性、电压凹陷和超极化后膜。我们还发现,在复杂爆发和低阈值峰值中,反弹峰值时间都有延迟。在Fmr1敲除小鼠中,MD-L→mPFC神经元中HCN通道活性的降低损害了HCN介导的膜电位调节的时间和强度。反应时间的改变可能对Fmr1 KO丘脑皮质回路中的节律传播产生不利影响。丘脑神经元对维持涉及认知和情感功能的节律性活动至关重要。了解丘脑皮质回路活动的具体机制可能有助于对FXS患者和其他以丘脑节律障碍为特征的疾病进行治疗干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fmr1 knockout disrupts multiple intrinsic properties via reduced HCN channel activity in mediodorsal thalamocortical neurons.

The neurodevelopmental disorder fragile X syndrome (FXS) results from hypermethylation of the FMR1 gene, which prevents production of the FMRP protein. FMRP modulates the expression and function of a variety of proteins, including voltage-gated ion channels, such as hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, which are integral to rhythmic activity in thalamic structures. Thalamocortical pathology, particularly involving the mediodorsal thalamus (MD), has been implicated in neurodevelopmental disorders such as FXS. MD connectivity with the medial prefrontal cortex (mPFC) is integral to executive functions such as working memory and social behaviours that are disrupted in FXS. We used a combination of retrograde labelling and ex vivo brain slice whole-cell electrophysiology in 40 wild-type and 42 Fmr1 knockout male mice to investigate how a lack of Fmr1 affects intrinsic cellular properties in lateral (MD-L) and medial (MD-M) MD neurons that project to the mPFC (MD→mPFC neurons). In MD-L neurons, Fmr1 knockout decreased the HCN-mediated membrane properties voltage sag and membrane after-hyperpolarization. We also identified a delay in rebound spike timing in both complex bursts and low-threshold spikes. In Fmr1 knockout mice, reduced HCN channel activity in MD-L→mPFC neurons impaired both the timing and the magnitude of HCN-mediated membrane potential regulation. Changes in response timing might adversely affect rhythm propagation in Fmr1 KO thalamocortical circuitry. MD thalamic neurons are crucial for maintaining rhythmic activity involved in cognitive and affective functions. Understanding specific mechanisms of thalamocortical circuit activity might lead to therapeutic interventions for individuals with FXS and other conditions characterized by thalamic dysrhythmia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Physiology
Experimental Physiology 医学-生理学
CiteScore
5.10
自引率
3.70%
发文量
262
审稿时长
1 months
期刊介绍: Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged. Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信