氮源与光强的交互作用影响了斜叶麻的生物量和表型可塑性。

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiyan Long, Yiqi Feng, Decai Huang, Yulu Lei, Xuexia Zhu, Zhou Yang
{"title":"氮源与光强的交互作用影响了斜叶麻的生物量和表型可塑性。","authors":"Jiyan Long, Yiqi Feng, Decai Huang, Yulu Lei, Xuexia Zhu, Zhou Yang","doi":"10.1007/s10529-025-03637-w","DOIUrl":null,"url":null,"abstract":"<p><p>As critical environmental factors, nitrogen and light not only regulate phytoplankton growth but also influence their phenotypic plasticity. Scenedesmus obliquus, an alga which is famous for its remarkable phenotypic plasticity, was studied to understand its response to varying combinations of nitrogen source and light intensity. It was cultured in media containing different nitrogen sources (NaNO<sub>3</sub>, NH<sub>4</sub>Cl, CO(NH<sub>2</sub>)<sub>2</sub>) under a range of light intensities (25, 50, 75, 100, 150 µmol photons m<sup>-2</sup> s<sup>-1</sup>). Results showed that growth rates increased with higher light intensities across all nitrogen sources. Photosynthetic efficiency (F<sub>v</sub>/F<sub>m</sub> and Φ<sub>PSII</sub>) remained stable in NaNO<sub>3</sub> treatments, but declined with rising light intensity in NH<sub>4</sub>Cl and CO(NH<sub>2</sub>)<sub>2</sub> treatments. The highest proportions of multicellular colonies were observed at 150 µmol photons m<sup>-2</sup> s<sup>-1</sup> for NH<sub>4</sub>Cl and NaNO<sub>3</sub> treatments, while colonies in CO(NH<sub>2</sub>)<sub>2</sub> treatments peaked at 100 µmol photons m<sup>-2</sup> s<sup>-1</sup>, with colony size stabilized at approximately 2.1, 4.0, and 1.0 cells per particle under NaNO<sub>3</sub>, NH<sub>4</sub>Cl, and CO(NH<sub>2</sub>)<sub>2</sub> treatments, respectively. Nitrogen removal efficiency improved with increasing light intensity across all treatments, though S. obliquus exhibited varying capacities to remove nitrogen depending on the sources. These findings demonstrated how S. obliquus adapts to varying nitrogen sources and light intensities in its growth, photosynthesis, and morphology, providing new evidence for our insights into its ecological versatility. This study established a theoretical foundation for optimizing culture conditions in applications such as wastewater treatment and bioenergy production.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 5","pages":"96"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interaction between nitrogen source and light intensity affects the biomass and phenotypic plasticity of Scenedesmus obliquus.\",\"authors\":\"Jiyan Long, Yiqi Feng, Decai Huang, Yulu Lei, Xuexia Zhu, Zhou Yang\",\"doi\":\"10.1007/s10529-025-03637-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As critical environmental factors, nitrogen and light not only regulate phytoplankton growth but also influence their phenotypic plasticity. Scenedesmus obliquus, an alga which is famous for its remarkable phenotypic plasticity, was studied to understand its response to varying combinations of nitrogen source and light intensity. It was cultured in media containing different nitrogen sources (NaNO<sub>3</sub>, NH<sub>4</sub>Cl, CO(NH<sub>2</sub>)<sub>2</sub>) under a range of light intensities (25, 50, 75, 100, 150 µmol photons m<sup>-2</sup> s<sup>-1</sup>). Results showed that growth rates increased with higher light intensities across all nitrogen sources. Photosynthetic efficiency (F<sub>v</sub>/F<sub>m</sub> and Φ<sub>PSII</sub>) remained stable in NaNO<sub>3</sub> treatments, but declined with rising light intensity in NH<sub>4</sub>Cl and CO(NH<sub>2</sub>)<sub>2</sub> treatments. The highest proportions of multicellular colonies were observed at 150 µmol photons m<sup>-2</sup> s<sup>-1</sup> for NH<sub>4</sub>Cl and NaNO<sub>3</sub> treatments, while colonies in CO(NH<sub>2</sub>)<sub>2</sub> treatments peaked at 100 µmol photons m<sup>-2</sup> s<sup>-1</sup>, with colony size stabilized at approximately 2.1, 4.0, and 1.0 cells per particle under NaNO<sub>3</sub>, NH<sub>4</sub>Cl, and CO(NH<sub>2</sub>)<sub>2</sub> treatments, respectively. Nitrogen removal efficiency improved with increasing light intensity across all treatments, though S. obliquus exhibited varying capacities to remove nitrogen depending on the sources. These findings demonstrated how S. obliquus adapts to varying nitrogen sources and light intensities in its growth, photosynthesis, and morphology, providing new evidence for our insights into its ecological versatility. This study established a theoretical foundation for optimizing culture conditions in applications such as wastewater treatment and bioenergy production.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 5\",\"pages\":\"96\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-025-03637-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03637-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氮和光作为关键的环境因子,不仅调控着浮游植物的生长,而且影响着浮游植物的表型可塑性。以具有显著表型可塑性的绿藻(Scenedesmus obliquus)为研究对象,了解其对不同氮源和光强组合的响应。在含不同氮源(NaNO3、NH4Cl、CO(NH2)2)的培养基中,在光强(25、50、75、100、150µmol光子m-2 s-1)范围内培养。结果表明,在所有氮源中,光强越强,生长速度越快。光合效率(Fv/Fm和ΦPSII)在NaNO3处理下保持稳定,而在NH4Cl和CO(NH2)2处理下随光强的增加而下降。在150µmol光子m-2 s-1时,NH4Cl和NaNO3处理的多细胞菌落比例最高,而CO(NH2)2处理的菌落比例最高,达到100µmol光子m-2 s-1,在NaNO3、NH4Cl和CO(NH2)2处理下,菌落大小分别稳定在2.1、4.0和1.0个细胞/颗粒左右。在所有处理中,氮的去除效率随光照强度的增加而提高,但斜叶参的去除能力随光照强度的增加而变化。这些发现揭示了斜叶藻在生长、光合作用和形态上如何适应不同的氮源和光照强度,为我们深入了解其生态多样性提供了新的证据。该研究为优化废水处理和生物能源生产等应用中的培养条件奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interaction between nitrogen source and light intensity affects the biomass and phenotypic plasticity of Scenedesmus obliquus.

As critical environmental factors, nitrogen and light not only regulate phytoplankton growth but also influence their phenotypic plasticity. Scenedesmus obliquus, an alga which is famous for its remarkable phenotypic plasticity, was studied to understand its response to varying combinations of nitrogen source and light intensity. It was cultured in media containing different nitrogen sources (NaNO3, NH4Cl, CO(NH2)2) under a range of light intensities (25, 50, 75, 100, 150 µmol photons m-2 s-1). Results showed that growth rates increased with higher light intensities across all nitrogen sources. Photosynthetic efficiency (Fv/Fm and ΦPSII) remained stable in NaNO3 treatments, but declined with rising light intensity in NH4Cl and CO(NH2)2 treatments. The highest proportions of multicellular colonies were observed at 150 µmol photons m-2 s-1 for NH4Cl and NaNO3 treatments, while colonies in CO(NH2)2 treatments peaked at 100 µmol photons m-2 s-1, with colony size stabilized at approximately 2.1, 4.0, and 1.0 cells per particle under NaNO3, NH4Cl, and CO(NH2)2 treatments, respectively. Nitrogen removal efficiency improved with increasing light intensity across all treatments, though S. obliquus exhibited varying capacities to remove nitrogen depending on the sources. These findings demonstrated how S. obliquus adapts to varying nitrogen sources and light intensities in its growth, photosynthesis, and morphology, providing new evidence for our insights into its ecological versatility. This study established a theoretical foundation for optimizing culture conditions in applications such as wastewater treatment and bioenergy production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信