界面耦合作用下MnCO3/Ni(OH)2纳米花阵列上尿素的高效氧化。

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nan Lu, Hao Guo, Fozia Sultana, Jie Zhang, Xiaoqing Yan, Renhong Li
{"title":"界面耦合作用下MnCO3/Ni(OH)2纳米花阵列上尿素的高效氧化。","authors":"Nan Lu, Hao Guo, Fozia Sultana, Jie Zhang, Xiaoqing Yan, Renhong Li","doi":"10.1002/asia.202500828","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical urea oxidation reaction (UOR) presents an energy-efficient alternative to the sluggish oxygen evolution reaction (OER), operating at a substantially lower thermodynamic potential and thereby reducing the energy input for hydrogen production by approximately 70%. Simultaneously, UOR facilitates wastewater remediation, offering dual environmental and energy benefits. In this work, we report a MnCO<sub>3</sub>/Ni(OH)<sub>2</sub> heterostructured nanoflower array directly grown on conductive carbon cloth that exhibits outstanding UOR catalytic activity and stability. The catalyst achieves remarkably low overpotentials of 90 mV at 10 mA·cm<sup>-2</sup> and 167 mV at 200 mA·cm<sup>-2</sup>, along with excellent long-term durability under continuous operation. Comprehensive characterization and mechanistic analysis reveal that the enhanced performance originates from interfacial electronic redistribution at the MnCO<sub>3</sub>/Ni(OH)<sub>2</sub> junction. This electronic interaction promotes the stabilization of highly-valent Ni active species and improves electrode wettability, thereby facilitating efficient charge transfer and mass transport. This study underscores the critical role of heterointerface engineering and compositional modulation in developing robust and high-performance UOR electrocatalysts, providing valuable insights for their practical deployment in sustainable hydrogen generation and environmental remediation.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00828"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Urea Oxidation on MnCO<sub>3</sub>/Ni(OH)<sub>2</sub> Nanoflower Arrays Via Interfacial Coupling.\",\"authors\":\"Nan Lu, Hao Guo, Fozia Sultana, Jie Zhang, Xiaoqing Yan, Renhong Li\",\"doi\":\"10.1002/asia.202500828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical urea oxidation reaction (UOR) presents an energy-efficient alternative to the sluggish oxygen evolution reaction (OER), operating at a substantially lower thermodynamic potential and thereby reducing the energy input for hydrogen production by approximately 70%. Simultaneously, UOR facilitates wastewater remediation, offering dual environmental and energy benefits. In this work, we report a MnCO<sub>3</sub>/Ni(OH)<sub>2</sub> heterostructured nanoflower array directly grown on conductive carbon cloth that exhibits outstanding UOR catalytic activity and stability. The catalyst achieves remarkably low overpotentials of 90 mV at 10 mA·cm<sup>-2</sup> and 167 mV at 200 mA·cm<sup>-2</sup>, along with excellent long-term durability under continuous operation. Comprehensive characterization and mechanistic analysis reveal that the enhanced performance originates from interfacial electronic redistribution at the MnCO<sub>3</sub>/Ni(OH)<sub>2</sub> junction. This electronic interaction promotes the stabilization of highly-valent Ni active species and improves electrode wettability, thereby facilitating efficient charge transfer and mass transport. This study underscores the critical role of heterointerface engineering and compositional modulation in developing robust and high-performance UOR electrocatalysts, providing valuable insights for their practical deployment in sustainable hydrogen generation and environmental remediation.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e00828\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202500828\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500828","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学尿素氧化反应(UOR)为缓慢的析氧反应(OER)提供了一种节能的替代方案,在相当低的热力学势下运行,从而将产氢的能量输入减少了约70%。同时,UOR促进废水修复,提供环境和能源双重效益。在这项工作中,我们报道了一种直接生长在导电碳布上的MnCO3/Ni(OH)2异质结构纳米花阵列,它具有出色的UOR催化活性和稳定性。该催化剂在10 mA·cm-2时的过电位为90 mV,在200 mA·cm-2时的过电位为167 mV,并且在连续使用下具有优异的长期耐久性。综合表征和机理分析表明,性能的增强源于MnCO3/Ni(OH)2结处的界面电子重分布。这种电子相互作用促进了高价Ni活性物质的稳定,提高了电极的润湿性,从而促进了有效的电荷转移和质量传递。该研究强调了异质界面工程和组成调制在开发稳健和高性能UOR电催化剂中的关键作用,为其在可持续制氢和环境修复中的实际应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Urea Oxidation on MnCO3/Ni(OH)2 Nanoflower Arrays Via Interfacial Coupling.

The electrochemical urea oxidation reaction (UOR) presents an energy-efficient alternative to the sluggish oxygen evolution reaction (OER), operating at a substantially lower thermodynamic potential and thereby reducing the energy input for hydrogen production by approximately 70%. Simultaneously, UOR facilitates wastewater remediation, offering dual environmental and energy benefits. In this work, we report a MnCO3/Ni(OH)2 heterostructured nanoflower array directly grown on conductive carbon cloth that exhibits outstanding UOR catalytic activity and stability. The catalyst achieves remarkably low overpotentials of 90 mV at 10 mA·cm-2 and 167 mV at 200 mA·cm-2, along with excellent long-term durability under continuous operation. Comprehensive characterization and mechanistic analysis reveal that the enhanced performance originates from interfacial electronic redistribution at the MnCO3/Ni(OH)2 junction. This electronic interaction promotes the stabilization of highly-valent Ni active species and improves electrode wettability, thereby facilitating efficient charge transfer and mass transport. This study underscores the critical role of heterointerface engineering and compositional modulation in developing robust and high-performance UOR electrocatalysts, providing valuable insights for their practical deployment in sustainable hydrogen generation and environmental remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信