一种高选择性人工辅酶:1,1′-乙烯-2,2′-二溴联吡啶在甲酸脱氢酶生物电催化下将CO2还原为甲酸酯

IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-06-28 DOI:10.1002/cctc.202500613
Yuanfang Deng, Panpan Ye, Xiaoyan Liu, Aiyong He, Jun Xia, Jiaxing Xu
{"title":"一种高选择性人工辅酶:1,1′-乙烯-2,2′-二溴联吡啶在甲酸脱氢酶生物电催化下将CO2还原为甲酸酯","authors":"Yuanfang Deng,&nbsp;Panpan Ye,&nbsp;Xiaoyan Liu,&nbsp;Aiyong He,&nbsp;Jun Xia,&nbsp;Jiaxing Xu","doi":"10.1002/cctc.202500613","DOIUrl":null,"url":null,"abstract":"<p>The inherent instability and suboptimal electron transfer efficiency of natural coenzymes like NADH pose fundamental challenges in enzymatic CO<sub>2</sub> electroreduction. We address this critical limitation through an electrochemical-enzymatic hybrid system employing 1,1′-ethylene-2,2′-bipyridinium (DB<sup>∙+</sup>) as an artificial coenzyme for<i> Candida boidinii </i>formate dehydrogenase (<i>Cb</i>FDH). This synthetic mediator demonstrates superior electrochemical regeneration at −0.65 V versus Ag/AgCl, maintaining unidirectional redox activity that exclusively drives CO<sub>2</sub>-to-formate conversion while eliminating parasitic reverse reactions. Our engineered three-compartment electrolyzer achieves spatial decoupling of DB<sup>∙+</sup> regeneration from enzymatic catalysis, delivering six distinct current response cycles within 60 min and sustaining a formate production rate of 0.158 mM/min. System optimization at pH 6.3 yields a maximum formate concentration of 9.5 mM with 75.5% Faradaic efficiency. Mechanistic investigations reveal pH-dependent substrate specificity: HCO<sub>3</sub><sup>−</sup> acts as a competitive inhibitor under alkaline conditions (pH 7.4), while CO<sub>2</sub>/H<sub>2</sub>CO<sub>3</sub> serves as the exclusive enzymatic substrate at optimal pH 6.3. This work pioneers a paradigm for substituting biological cofactors with synthetic analogues, proposing a scalable architecture that harmonizes electrochemical potential regulation with enzymatic stereoselectivity for sustainable carbon utilization. Future research may prioritize depositing high-specific-surface-area conductive materials on electrodes to boost active sites or genetically modifying formate dehydrogenase to optimize enzyme–coenzyme interactions and enhance catalytic efficiency.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 17","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Selective Artificial Coenzyme: 1,1′-Ethylene-2,2′-bipyridinium Dibromide for Bioelectrocatalytic Reduction of CO2 to Formate by Formate Dehydrogenase\",\"authors\":\"Yuanfang Deng,&nbsp;Panpan Ye,&nbsp;Xiaoyan Liu,&nbsp;Aiyong He,&nbsp;Jun Xia,&nbsp;Jiaxing Xu\",\"doi\":\"10.1002/cctc.202500613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The inherent instability and suboptimal electron transfer efficiency of natural coenzymes like NADH pose fundamental challenges in enzymatic CO<sub>2</sub> electroreduction. We address this critical limitation through an electrochemical-enzymatic hybrid system employing 1,1′-ethylene-2,2′-bipyridinium (DB<sup>∙+</sup>) as an artificial coenzyme for<i> Candida boidinii </i>formate dehydrogenase (<i>Cb</i>FDH). This synthetic mediator demonstrates superior electrochemical regeneration at −0.65 V versus Ag/AgCl, maintaining unidirectional redox activity that exclusively drives CO<sub>2</sub>-to-formate conversion while eliminating parasitic reverse reactions. Our engineered three-compartment electrolyzer achieves spatial decoupling of DB<sup>∙+</sup> regeneration from enzymatic catalysis, delivering six distinct current response cycles within 60 min and sustaining a formate production rate of 0.158 mM/min. System optimization at pH 6.3 yields a maximum formate concentration of 9.5 mM with 75.5% Faradaic efficiency. Mechanistic investigations reveal pH-dependent substrate specificity: HCO<sub>3</sub><sup>−</sup> acts as a competitive inhibitor under alkaline conditions (pH 7.4), while CO<sub>2</sub>/H<sub>2</sub>CO<sub>3</sub> serves as the exclusive enzymatic substrate at optimal pH 6.3. This work pioneers a paradigm for substituting biological cofactors with synthetic analogues, proposing a scalable architecture that harmonizes electrochemical potential regulation with enzymatic stereoselectivity for sustainable carbon utilization. Future research may prioritize depositing high-specific-surface-area conductive materials on electrodes to boost active sites or genetically modifying formate dehydrogenase to optimize enzyme–coenzyme interactions and enhance catalytic efficiency.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 17\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500613\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500613","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

NADH等天然辅酶固有的不稳定性和不理想的电子传递效率对酶促CO2电还原提出了根本性的挑战。我们通过使用1,1 ' -乙烯-2,2 ' -联吡啶(DB∙+)作为假丝酵母甲酸脱氢酶(CbFDH)的人工辅酶的电化学-酶混合系统来解决这一关键限制。与Ag/AgCl相比,该合成介质在−0.65 V下表现出优越的电化学再生能力,保持单向氧化还原活性,仅驱动二氧化碳到甲酸酯的转化,同时消除寄生逆反应。我们设计的三室电解槽实现了酶催化DB∙+再生的空间解耦,在60分钟内提供6个不同的电流响应周期,并保持0.158 mM/min的甲酸产率。在pH为6.3时,系统优化得到甲酸盐的最大浓度为9.5 mM,法拉第效率为75.5%。机制研究揭示了pH依赖性底物特异性:HCO3−在碱性条件下(pH 7.4)作为竞争性抑制剂,而CO2/H2CO3在最佳pH 6.3时作为唯一的酶底物。这项工作开创了用合成类似物取代生物辅助因子的范例,提出了一种可扩展的结构,可以协调电化学电位调节和酶立体选择性,以实现可持续的碳利用。未来的研究可能会优先考虑在电极上沉积高比表面积的导电材料来增强活性位点或基因修饰甲酸脱氢酶以优化酶-辅酶的相互作用并提高催化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Highly Selective Artificial Coenzyme: 1,1′-Ethylene-2,2′-bipyridinium Dibromide for Bioelectrocatalytic Reduction of CO2 to Formate by Formate Dehydrogenase

A Highly Selective Artificial Coenzyme: 1,1′-Ethylene-2,2′-bipyridinium Dibromide for Bioelectrocatalytic Reduction of CO2 to Formate by Formate Dehydrogenase

A Highly Selective Artificial Coenzyme: 1,1′-Ethylene-2,2′-bipyridinium Dibromide for Bioelectrocatalytic Reduction of CO2 to Formate by Formate Dehydrogenase

A Highly Selective Artificial Coenzyme: 1,1′-Ethylene-2,2′-bipyridinium Dibromide for Bioelectrocatalytic Reduction of CO2 to Formate by Formate Dehydrogenase

The inherent instability and suboptimal electron transfer efficiency of natural coenzymes like NADH pose fundamental challenges in enzymatic CO2 electroreduction. We address this critical limitation through an electrochemical-enzymatic hybrid system employing 1,1′-ethylene-2,2′-bipyridinium (DB∙+) as an artificial coenzyme for Candida boidinii formate dehydrogenase (CbFDH). This synthetic mediator demonstrates superior electrochemical regeneration at −0.65 V versus Ag/AgCl, maintaining unidirectional redox activity that exclusively drives CO2-to-formate conversion while eliminating parasitic reverse reactions. Our engineered three-compartment electrolyzer achieves spatial decoupling of DB∙+ regeneration from enzymatic catalysis, delivering six distinct current response cycles within 60 min and sustaining a formate production rate of 0.158 mM/min. System optimization at pH 6.3 yields a maximum formate concentration of 9.5 mM with 75.5% Faradaic efficiency. Mechanistic investigations reveal pH-dependent substrate specificity: HCO3 acts as a competitive inhibitor under alkaline conditions (pH 7.4), while CO2/H2CO3 serves as the exclusive enzymatic substrate at optimal pH 6.3. This work pioneers a paradigm for substituting biological cofactors with synthetic analogues, proposing a scalable architecture that harmonizes electrochemical potential regulation with enzymatic stereoselectivity for sustainable carbon utilization. Future research may prioritize depositing high-specific-surface-area conductive materials on electrodes to boost active sites or genetically modifying formate dehydrogenase to optimize enzyme–coenzyme interactions and enhance catalytic efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信