Andreea Elena Sandu Dorneanu, Raluca-Ioana Stefan- van Staden, Damaris-Cristina Gheorghe
{"title":"超灵敏快速测定豆腐脑和科技湖水中黄腐酸","authors":"Andreea Elena Sandu Dorneanu, Raluca-Ioana Stefan- van Staden, Damaris-Cristina Gheorghe","doi":"10.1002/elan.70050","DOIUrl":null,"url":null,"abstract":"<p>Sapropel and Techirghiol Lake water are an excellent source of organic substances like fulvic acid, which can be extracted and used in the pharmaceutical industry. On-site determination of fulvic acid from lake water and sapropel is valuable for the possibility of exploring the sapropel and water as it is (can serve as daily quality control) for therapeutic purposes, or it can be taken to specialised laboratories for the extraction of fulvic acid, followed by its utilisation in the pharmaceutical industry. An ultrasensitive stochastic sensor based on reduced graphene oxide paste decorated with gold and palladium nanoparticles and modified with quinine was designed, characterised, and validated for the determination of fulvic acid in sapropel and also in the Techirghiol Lake water. The sensor can be used on a wide concentration range, from 5.00 fg mL<sup>−1</sup> to 5.00 μg mL<sup>−1</sup>, with a high sensitivity (1.97 × 10<sup>8</sup><sup> </sup>s<sup>−1</sup> g<sup>−1</sup> mL). High recovery values (>99.00%) were recorded for the determination of fulvic acid in sapropel and in the Techirghiol Lake water. Validation of the proposed sensor and screening method for fulvic acid is done versus an HPLC method. The on-site measurements with the ultrasensitive stochastic sensor will contribute to the reliable determination of the quality of sapropel and water in real time.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive and Fast Determination of Fulvic Acid in Sapropel and in the Techirghiol Lake Water\",\"authors\":\"Andreea Elena Sandu Dorneanu, Raluca-Ioana Stefan- van Staden, Damaris-Cristina Gheorghe\",\"doi\":\"10.1002/elan.70050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sapropel and Techirghiol Lake water are an excellent source of organic substances like fulvic acid, which can be extracted and used in the pharmaceutical industry. On-site determination of fulvic acid from lake water and sapropel is valuable for the possibility of exploring the sapropel and water as it is (can serve as daily quality control) for therapeutic purposes, or it can be taken to specialised laboratories for the extraction of fulvic acid, followed by its utilisation in the pharmaceutical industry. An ultrasensitive stochastic sensor based on reduced graphene oxide paste decorated with gold and palladium nanoparticles and modified with quinine was designed, characterised, and validated for the determination of fulvic acid in sapropel and also in the Techirghiol Lake water. The sensor can be used on a wide concentration range, from 5.00 fg mL<sup>−1</sup> to 5.00 μg mL<sup>−1</sup>, with a high sensitivity (1.97 × 10<sup>8</sup><sup> </sup>s<sup>−1</sup> g<sup>−1</sup> mL). High recovery values (>99.00%) were recorded for the determination of fulvic acid in sapropel and in the Techirghiol Lake water. Validation of the proposed sensor and screening method for fulvic acid is done versus an HPLC method. The on-site measurements with the ultrasensitive stochastic sensor will contribute to the reliable determination of the quality of sapropel and water in real time.</p>\",\"PeriodicalId\":162,\"journal\":{\"name\":\"Electroanalysis\",\"volume\":\"37 9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroanalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elan.70050\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elan.70050","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Ultrasensitive and Fast Determination of Fulvic Acid in Sapropel and in the Techirghiol Lake Water
Sapropel and Techirghiol Lake water are an excellent source of organic substances like fulvic acid, which can be extracted and used in the pharmaceutical industry. On-site determination of fulvic acid from lake water and sapropel is valuable for the possibility of exploring the sapropel and water as it is (can serve as daily quality control) for therapeutic purposes, or it can be taken to specialised laboratories for the extraction of fulvic acid, followed by its utilisation in the pharmaceutical industry. An ultrasensitive stochastic sensor based on reduced graphene oxide paste decorated with gold and palladium nanoparticles and modified with quinine was designed, characterised, and validated for the determination of fulvic acid in sapropel and also in the Techirghiol Lake water. The sensor can be used on a wide concentration range, from 5.00 fg mL−1 to 5.00 μg mL−1, with a high sensitivity (1.97 × 108s−1 g−1 mL). High recovery values (>99.00%) were recorded for the determination of fulvic acid in sapropel and in the Techirghiol Lake water. Validation of the proposed sensor and screening method for fulvic acid is done versus an HPLC method. The on-site measurements with the ultrasensitive stochastic sensor will contribute to the reliable determination of the quality of sapropel and water in real time.
期刊介绍:
Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications.
Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.