Flavio Poletto, Cinzia Bellezza, Gualtiero Böhm, Fabio Meneghini, Athena Chalari, Anna Stork, Mahmut Parlaktuna, Erdinç Şentürk, Deyan Draganov, Gijs van Otten, Sevket Durucan
{"title":"某地热储层三维测量DAS-VSP振动器数据双信号处理实例研究","authors":"Flavio Poletto, Cinzia Bellezza, Gualtiero Böhm, Fabio Meneghini, Athena Chalari, Anna Stork, Mahmut Parlaktuna, Erdinç Şentürk, Deyan Draganov, Gijs van Otten, Sevket Durucan","doi":"10.1111/1365-2478.70073","DOIUrl":null,"url":null,"abstract":"<p>The three-dimensional (3D) distributed acoustic sensing (DAS) vertical seismic profile (VSP) technique is an effective tool to characterize subsurface reservoirs, enabling the use of large and densely sampled borehole receiver arrays with many surface vibrator source points for onshore time-lapse monitoring. However, the processing of the DAS VSP signals for imaging purposes is based on a reliable wavefield separation, which may depend on the recognition and quality of the direct arrivals. To overcome this limitation for common-source gathers with poor signal-to- noise ratio or with interferences, we apply the dual-signal processing method, which allows us to estimate and separate the DAS wavefields by signals' combination without arrival picking. We present a case study of a 3D VSP DAS dataset recorded at a geothermal reservoir in Turkey, showing that the method, similar to a geophone and hydrophone combination, is robust and effective and can be advantageously integrated with the conventional processing. Supported by signal benchmarking, modelling and signal-to-noise ratio analysis, we treat common-source and common-receiver data. Our analysis shows the advantages and limitations of the proposed approach, valuable in the time-lapse perspective.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70073","citationCount":"0","resultStr":"{\"title\":\"Case Study of Dual-Signal Processing of DAS-VSP Vibrator Data From a 3D Survey in a Geothermal Reservoir\",\"authors\":\"Flavio Poletto, Cinzia Bellezza, Gualtiero Böhm, Fabio Meneghini, Athena Chalari, Anna Stork, Mahmut Parlaktuna, Erdinç Şentürk, Deyan Draganov, Gijs van Otten, Sevket Durucan\",\"doi\":\"10.1111/1365-2478.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The three-dimensional (3D) distributed acoustic sensing (DAS) vertical seismic profile (VSP) technique is an effective tool to characterize subsurface reservoirs, enabling the use of large and densely sampled borehole receiver arrays with many surface vibrator source points for onshore time-lapse monitoring. However, the processing of the DAS VSP signals for imaging purposes is based on a reliable wavefield separation, which may depend on the recognition and quality of the direct arrivals. To overcome this limitation for common-source gathers with poor signal-to- noise ratio or with interferences, we apply the dual-signal processing method, which allows us to estimate and separate the DAS wavefields by signals' combination without arrival picking. We present a case study of a 3D VSP DAS dataset recorded at a geothermal reservoir in Turkey, showing that the method, similar to a geophone and hydrophone combination, is robust and effective and can be advantageously integrated with the conventional processing. Supported by signal benchmarking, modelling and signal-to-noise ratio analysis, we treat common-source and common-receiver data. Our analysis shows the advantages and limitations of the proposed approach, valuable in the time-lapse perspective.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"73 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70073\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70073\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70073","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Case Study of Dual-Signal Processing of DAS-VSP Vibrator Data From a 3D Survey in a Geothermal Reservoir
The three-dimensional (3D) distributed acoustic sensing (DAS) vertical seismic profile (VSP) technique is an effective tool to characterize subsurface reservoirs, enabling the use of large and densely sampled borehole receiver arrays with many surface vibrator source points for onshore time-lapse monitoring. However, the processing of the DAS VSP signals for imaging purposes is based on a reliable wavefield separation, which may depend on the recognition and quality of the direct arrivals. To overcome this limitation for common-source gathers with poor signal-to- noise ratio or with interferences, we apply the dual-signal processing method, which allows us to estimate and separate the DAS wavefields by signals' combination without arrival picking. We present a case study of a 3D VSP DAS dataset recorded at a geothermal reservoir in Turkey, showing that the method, similar to a geophone and hydrophone combination, is robust and effective and can be advantageously integrated with the conventional processing. Supported by signal benchmarking, modelling and signal-to-noise ratio analysis, we treat common-source and common-receiver data. Our analysis shows the advantages and limitations of the proposed approach, valuable in the time-lapse perspective.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.