{"title":"准一维喷管中非定常等熵气体流动熵解的大时间存在性和衰减性","authors":"Jianjun Chen, Qiquan Fang, Yun-guang Lu, Naoki Tsuge","doi":"10.1111/sapm.70104","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we apply the viscosity–flux approximation method coupled with the maximum principle to obtain the a priori <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^{\\infty }$</annotation>\n </semantics></math> estimates for the viscosity approximation solutions of the unsteady isentropic gas flow in the de Laval nozzle. Then by applying the compensated compactness method, we obtain the global existence of entropy solutions. Finally, we study the large-time behavior of solutions and show the decay of the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>γ</mi>\n </msup>\n <annotation>$L^{\\gamma }$</annotation>\n </semantics></math> norm of density for any adiabatic exponent <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>></mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\gamma >1$</annotation>\n </semantics></math>.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Time Existence and Decay of Entropy Solutions for Unsteady Isentropic Gas Flow in the Quasi-One-Dimensional Nozzle\",\"authors\":\"Jianjun Chen, Qiquan Fang, Yun-guang Lu, Naoki Tsuge\",\"doi\":\"10.1111/sapm.70104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we apply the viscosity–flux approximation method coupled with the maximum principle to obtain the a priori <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$L^{\\\\infty }$</annotation>\\n </semantics></math> estimates for the viscosity approximation solutions of the unsteady isentropic gas flow in the de Laval nozzle. Then by applying the compensated compactness method, we obtain the global existence of entropy solutions. Finally, we study the large-time behavior of solutions and show the decay of the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>γ</mi>\\n </msup>\\n <annotation>$L^{\\\\gamma }$</annotation>\\n </semantics></math> norm of density for any adiabatic exponent <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>></mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\gamma >1$</annotation>\\n </semantics></math>.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"155 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Large-Time Existence and Decay of Entropy Solutions for Unsteady Isentropic Gas Flow in the Quasi-One-Dimensional Nozzle
In this paper, we apply the viscosity–flux approximation method coupled with the maximum principle to obtain the a priori estimates for the viscosity approximation solutions of the unsteady isentropic gas flow in the de Laval nozzle. Then by applying the compensated compactness method, we obtain the global existence of entropy solutions. Finally, we study the large-time behavior of solutions and show the decay of the norm of density for any adiabatic exponent .
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.