{"title":"热浪和火波:2022年夏季伦敦城市野火的驱动因素","authors":"Jamie John, Guillermo Rein","doi":"10.1007/s10694-025-01737-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the summer of 2022, a series of heatwaves caused an unprecedented wave of wildfires across the UK. London, in particular, was badly affected. Its green spaces wilted, and the drying vegetation provided the fuel for wildfires. The London Fire Brigade (LFB), one of the largest firefighting organisations in the world, was overwhelmed. On 19th July 2022, it experienced its busiest day since World War II. Our work represents a first attempt to examine and quantify the link between heatwaves and wildfires in a city. We combine fire incident data from the LFB and meteorological data from the Met Office, from 2009 to 2022, identifying vapour pressure deficit (VPD) as a key driver of wildfires in the urban habitants of Greater London. Wildfire activity is characterised using the number of recorded wildfires, and the time spent at incidents by the LFB’s fire pumps. We find that VPD is able to explain up to 61% of the variation in number of London wildfires. Relative humidity, and maximum daily temperature are only able to explain 44% and 42% of the variation respectively. We find that the Met Office’s definition of a heatwave—defined for the purpose of public health—is unsuited to describe the process of vegetation drying, and propose a new definition using data from the Met Office, based on vapour pressure deficit. Further, using the time spent at incidents by the LFB’s pumps, we define and identify the concept of a firewave, in order to foresee the potential arrival of another wave of extreme wildfires in London and prepare accordingly. It is hoped that the results will be of operational value to the LFB, and lay the foundation for further work investigating the role of heatwaves and VPD in increasing wildfire hazards in cities and other urban environments worldwide.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"61 5","pages":"3451 - 3460"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-025-01737-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Heatwaves and Firewaves: The Drivers of Urban Wildfires in London in the Summer of 2022\",\"authors\":\"Jamie John, Guillermo Rein\",\"doi\":\"10.1007/s10694-025-01737-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the summer of 2022, a series of heatwaves caused an unprecedented wave of wildfires across the UK. London, in particular, was badly affected. Its green spaces wilted, and the drying vegetation provided the fuel for wildfires. The London Fire Brigade (LFB), one of the largest firefighting organisations in the world, was overwhelmed. On 19th July 2022, it experienced its busiest day since World War II. Our work represents a first attempt to examine and quantify the link between heatwaves and wildfires in a city. We combine fire incident data from the LFB and meteorological data from the Met Office, from 2009 to 2022, identifying vapour pressure deficit (VPD) as a key driver of wildfires in the urban habitants of Greater London. Wildfire activity is characterised using the number of recorded wildfires, and the time spent at incidents by the LFB’s fire pumps. We find that VPD is able to explain up to 61% of the variation in number of London wildfires. Relative humidity, and maximum daily temperature are only able to explain 44% and 42% of the variation respectively. We find that the Met Office’s definition of a heatwave—defined for the purpose of public health—is unsuited to describe the process of vegetation drying, and propose a new definition using data from the Met Office, based on vapour pressure deficit. Further, using the time spent at incidents by the LFB’s pumps, we define and identify the concept of a firewave, in order to foresee the potential arrival of another wave of extreme wildfires in London and prepare accordingly. It is hoped that the results will be of operational value to the LFB, and lay the foundation for further work investigating the role of heatwaves and VPD in increasing wildfire hazards in cities and other urban environments worldwide.</p></div>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":\"61 5\",\"pages\":\"3451 - 3460\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10694-025-01737-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10694-025-01737-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-025-01737-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Heatwaves and Firewaves: The Drivers of Urban Wildfires in London in the Summer of 2022
In the summer of 2022, a series of heatwaves caused an unprecedented wave of wildfires across the UK. London, in particular, was badly affected. Its green spaces wilted, and the drying vegetation provided the fuel for wildfires. The London Fire Brigade (LFB), one of the largest firefighting organisations in the world, was overwhelmed. On 19th July 2022, it experienced its busiest day since World War II. Our work represents a first attempt to examine and quantify the link between heatwaves and wildfires in a city. We combine fire incident data from the LFB and meteorological data from the Met Office, from 2009 to 2022, identifying vapour pressure deficit (VPD) as a key driver of wildfires in the urban habitants of Greater London. Wildfire activity is characterised using the number of recorded wildfires, and the time spent at incidents by the LFB’s fire pumps. We find that VPD is able to explain up to 61% of the variation in number of London wildfires. Relative humidity, and maximum daily temperature are only able to explain 44% and 42% of the variation respectively. We find that the Met Office’s definition of a heatwave—defined for the purpose of public health—is unsuited to describe the process of vegetation drying, and propose a new definition using data from the Met Office, based on vapour pressure deficit. Further, using the time spent at incidents by the LFB’s pumps, we define and identify the concept of a firewave, in order to foresee the potential arrival of another wave of extreme wildfires in London and prepare accordingly. It is hoped that the results will be of operational value to the LFB, and lay the foundation for further work investigating the role of heatwaves and VPD in increasing wildfire hazards in cities and other urban environments worldwide.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.