5.8 GHz无人机无线电源应用气动天线阵列

IF 3.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Vinicius Uchoa Oliveira;Ricardo A. M. Pereira;Amit Kumar Baghel;Nuno B. Carvalho
{"title":"5.8 GHz无人机无线电源应用气动天线阵列","authors":"Vinicius Uchoa Oliveira;Ricardo A. M. Pereira;Amit Kumar Baghel;Nuno B. Carvalho","doi":"10.1109/JRFID.2025.3599976","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) has the potential to supply energy to various applications, such as electric vehicles and uncrewed aerial vehicles (UAVs), enabling extended operation without direct physical connections. This article presents the design, simulation, and experimental validation of a patch antenna array optimized for RF power reception in UAVs, based on a traditional antenna array. To improve aerodynamic performance, structural modifications, such as holes and slits, were introduced to facilitate airflow while maintaining the electromagnetic integrity of the antenna. This new antenna was manufactured and evaluated in an anechoic chamber, achieving a measured gain of 16.6 dBi, closely matching the simulated 17.74 dBi for a <inline-formula> <tex-math>$4{\\times }4$ </tex-math></inline-formula> patch array. Additionally, computer fluid dynamics simulations were performed and the stream trace and drag coefficients were compared for both antennas, confirming that the design reduces drag and enhances stability, making it a viable solution for UAV applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"705-712"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129109","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic Antenna Array for 5.8 GHz UAV Wireless Power Applications\",\"authors\":\"Vinicius Uchoa Oliveira;Ricardo A. M. Pereira;Amit Kumar Baghel;Nuno B. Carvalho\",\"doi\":\"10.1109/JRFID.2025.3599976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless power transfer (WPT) has the potential to supply energy to various applications, such as electric vehicles and uncrewed aerial vehicles (UAVs), enabling extended operation without direct physical connections. This article presents the design, simulation, and experimental validation of a patch antenna array optimized for RF power reception in UAVs, based on a traditional antenna array. To improve aerodynamic performance, structural modifications, such as holes and slits, were introduced to facilitate airflow while maintaining the electromagnetic integrity of the antenna. This new antenna was manufactured and evaluated in an anechoic chamber, achieving a measured gain of 16.6 dBi, closely matching the simulated 17.74 dBi for a <inline-formula> <tex-math>$4{\\\\times }4$ </tex-math></inline-formula> patch array. Additionally, computer fluid dynamics simulations were performed and the stream trace and drag coefficients were compared for both antennas, confirming that the design reduces drag and enhances stability, making it a viable solution for UAV applications.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"9 \",\"pages\":\"705-712\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129109\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11129109/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11129109/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线电力传输(WPT)有可能为各种应用提供能源,例如电动汽车和无人驾驶飞行器(uav),可以在没有直接物理连接的情况下实现扩展操作。本文在传统天线阵列的基础上,提出了一种针对无人机射频功率接收优化的贴片天线阵列的设计、仿真和实验验证。为了提高空气动力学性能,设计人员对天线进行了结构改造,如孔洞和狭缝,以促进气流流动,同时保持天线的电磁完整性。这种新型天线在消声室中制造和评估,实现了16.6 dBi的测量增益,与$4{\times}4$贴片阵列的模拟17.74 dBi非常匹配。此外,进行了计算机流体动力学模拟,比较了两种天线的流迹和阻力系数,证实了该设计减少了阻力,提高了稳定性,使其成为无人机应用的可行解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerodynamic Antenna Array for 5.8 GHz UAV Wireless Power Applications
Wireless power transfer (WPT) has the potential to supply energy to various applications, such as electric vehicles and uncrewed aerial vehicles (UAVs), enabling extended operation without direct physical connections. This article presents the design, simulation, and experimental validation of a patch antenna array optimized for RF power reception in UAVs, based on a traditional antenna array. To improve aerodynamic performance, structural modifications, such as holes and slits, were introduced to facilitate airflow while maintaining the electromagnetic integrity of the antenna. This new antenna was manufactured and evaluated in an anechoic chamber, achieving a measured gain of 16.6 dBi, closely matching the simulated 17.74 dBi for a $4{\times }4$ patch array. Additionally, computer fluid dynamics simulations were performed and the stream trace and drag coefficients were compared for both antennas, confirming that the design reduces drag and enhances stability, making it a viable solution for UAV applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信