基于机器学习的小型化保形反射器精确入侵防御设计

IF 4.8 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Geethanjali Govindarajan;Gulam Nabi Alsath Mohammed;Abhishek Premanand;Malathi Kanagasabai;Partibane Bactavatchalame
{"title":"基于机器学习的小型化保形反射器精确入侵防御设计","authors":"Geethanjali Govindarajan;Gulam Nabi Alsath Mohammed;Abhishek Premanand;Malathi Kanagasabai;Partibane Bactavatchalame","doi":"10.1109/LAWP.2025.3575344","DOIUrl":null,"url":null,"abstract":"This letter introduces a miniaturized conformal single-layer frequency selective rasorber (FSR) optimized for A-A-T-A-A mode operation for precision intrusion mitigation. The designed FSR has a back-to-back arrangement to achieve absorption and transmission properties. Machine learning (ML) algorithms are used to optimize FSR designs and reduce computational time. The preliminary geometrical parameters from proposed FSR obtained from full-wave electromagnetic solver are used to train the ML model. The K-nearest neighbor (KNN), and multiple linear regression (MLR) algorithm utilized in this research works efficiently with a small mean square error (MSE) varying between 0.01 and 0.09. Furthermore, the MLR offers the highest correlation (<inline-formula><tex-math>${{R}^2})$</tex-math></inline-formula> value of 0.99. The FSR optimized using the ML technique has a miniaturized size of 0.17λ<sub>o</sub> and offers quadruple absorption band viz 6.9 GHz (<italic>f</i><sub>1</sub>), 10.9 GHz (<italic>f</i><sub>2</sub>), 18.3 GHz (<italic>f</i><sub>3</sub>), and 20.8 GHz (<italic>f</i><sub>4</sub>) for precision intrusion mitigation. The FSR provides transmission characteristics at 14.6 GHz to 15.7 GHz (as per FCC standards). Due to its conformal design, the proposed A-A-T-A-A FSR serves as an ideal solution for RADAR systems in defense environment.","PeriodicalId":51059,"journal":{"name":"IEEE Antennas and Wireless Propagation Letters","volume":"24 9","pages":"2849-2853"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Miniaturized Conformal Rasorber Using Machine Learning for Precision Intrusion Mitigation\",\"authors\":\"Geethanjali Govindarajan;Gulam Nabi Alsath Mohammed;Abhishek Premanand;Malathi Kanagasabai;Partibane Bactavatchalame\",\"doi\":\"10.1109/LAWP.2025.3575344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a miniaturized conformal single-layer frequency selective rasorber (FSR) optimized for A-A-T-A-A mode operation for precision intrusion mitigation. The designed FSR has a back-to-back arrangement to achieve absorption and transmission properties. Machine learning (ML) algorithms are used to optimize FSR designs and reduce computational time. The preliminary geometrical parameters from proposed FSR obtained from full-wave electromagnetic solver are used to train the ML model. The K-nearest neighbor (KNN), and multiple linear regression (MLR) algorithm utilized in this research works efficiently with a small mean square error (MSE) varying between 0.01 and 0.09. Furthermore, the MLR offers the highest correlation (<inline-formula><tex-math>${{R}^2})$</tex-math></inline-formula> value of 0.99. The FSR optimized using the ML technique has a miniaturized size of 0.17λ<sub>o</sub> and offers quadruple absorption band viz 6.9 GHz (<italic>f</i><sub>1</sub>), 10.9 GHz (<italic>f</i><sub>2</sub>), 18.3 GHz (<italic>f</i><sub>3</sub>), and 20.8 GHz (<italic>f</i><sub>4</sub>) for precision intrusion mitigation. The FSR provides transmission characteristics at 14.6 GHz to 15.7 GHz (as per FCC standards). Due to its conformal design, the proposed A-A-T-A-A FSR serves as an ideal solution for RADAR systems in defense environment.\",\"PeriodicalId\":51059,\"journal\":{\"name\":\"IEEE Antennas and Wireless Propagation Letters\",\"volume\":\"24 9\",\"pages\":\"2849-2853\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Antennas and Wireless Propagation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11018825/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Wireless Propagation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11018825/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信介绍了一种小型化的共形单层频率选择反射器(FSR),针对精确入侵缓解的a - a - t - a模式操作进行了优化。设计的FSR具有背靠背的排列,以实现吸收和传输性能。机器学习(ML)算法用于优化FSR设计并减少计算时间。利用全波电磁求解器得到的FSR的初步几何参数对ML模型进行训练。本研究采用的k最近邻(KNN)和多元线性回归(MLR)算法具有较高的效率,均方误差(MSE)在0.01 ~ 0.09之间。此外,MLR提供了最高的相关性(${{R}^2})$值0.99。利用ML技术优化的FSR具有0.17λo的小型化尺寸,并提供四倍吸收频段,即6.9 GHz (f1), 10.9 GHz (f2), 18.3 GHz (f3)和20.8 GHz (f4),用于精确入侵缓解。FSR提供14.6 GHz到15.7 GHz的传输特性(根据FCC标准)。由于其保形设计,所提出的a - a - t - a FSR是国防环境中雷达系统的理想解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Miniaturized Conformal Rasorber Using Machine Learning for Precision Intrusion Mitigation
This letter introduces a miniaturized conformal single-layer frequency selective rasorber (FSR) optimized for A-A-T-A-A mode operation for precision intrusion mitigation. The designed FSR has a back-to-back arrangement to achieve absorption and transmission properties. Machine learning (ML) algorithms are used to optimize FSR designs and reduce computational time. The preliminary geometrical parameters from proposed FSR obtained from full-wave electromagnetic solver are used to train the ML model. The K-nearest neighbor (KNN), and multiple linear regression (MLR) algorithm utilized in this research works efficiently with a small mean square error (MSE) varying between 0.01 and 0.09. Furthermore, the MLR offers the highest correlation (${{R}^2})$ value of 0.99. The FSR optimized using the ML technique has a miniaturized size of 0.17λo and offers quadruple absorption band viz 6.9 GHz (f1), 10.9 GHz (f2), 18.3 GHz (f3), and 20.8 GHz (f4) for precision intrusion mitigation. The FSR provides transmission characteristics at 14.6 GHz to 15.7 GHz (as per FCC standards). Due to its conformal design, the proposed A-A-T-A-A FSR serves as an ideal solution for RADAR systems in defense environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
9.50%
发文量
529
审稿时长
1.0 months
期刊介绍: IEEE Antennas and Wireless Propagation Letters (AWP Letters) is devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation. These are areas of competence for the IEEE Antennas and Propagation Society (AP-S). AWPL aims to be one of the "fastest" journals among IEEE publications. This means that for papers that are eventually accepted, it is intended that an author may expect his or her paper to appear in IEEE Xplore, on average, around two months after submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信