Mingyang Gong , Zhi-Zhong Chen , Guohui Lin , Lusheng Wang
{"title":"通过o -5或更长的路径近似地覆盖顶点","authors":"Mingyang Gong , Zhi-Zhong Chen , Guohui Lin , Lusheng Wang","doi":"10.1016/j.jcss.2025.103704","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span>, which is to cover as many vertices as possible in a given graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> by vertex-disjoint <span><math><msup><mrow><mn>5</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>-paths (i.e., paths each with at least five vertices). <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span> is NP-hard and admits an existing local-search-based approximation algorithm which achieves a ratio of <span><math><mfrac><mrow><mn>19</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>≈</mo><mn>2.714</mn></math></span> and runs in <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>V</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span> time. In this paper, we present a new approximation algorithm for <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span> which achieves a ratio of 2.511 and runs in <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>V</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2.5</mn></mrow></msup><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time. Unlike the previous algorithm, the new algorithm is based on maximum matching, maximum path-cycle cover, and recursion.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103704"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximately covering vertices by order-5 or longer paths\",\"authors\":\"Mingyang Gong , Zhi-Zhong Chen , Guohui Lin , Lusheng Wang\",\"doi\":\"10.1016/j.jcss.2025.103704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span>, which is to cover as many vertices as possible in a given graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> by vertex-disjoint <span><math><msup><mrow><mn>5</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>-paths (i.e., paths each with at least five vertices). <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span> is NP-hard and admits an existing local-search-based approximation algorithm which achieves a ratio of <span><math><mfrac><mrow><mn>19</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>≈</mo><mn>2.714</mn></math></span> and runs in <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>V</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span> time. In this paper, we present a new approximation algorithm for <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span> which achieves a ratio of 2.511 and runs in <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>V</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2.5</mn></mrow></msup><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time. Unlike the previous algorithm, the new algorithm is based on maximum matching, maximum path-cycle cover, and recursion.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"156 \",\"pages\":\"Article 103704\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025000868\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000868","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Approximately covering vertices by order-5 or longer paths
This paper studies , which is to cover as many vertices as possible in a given graph by vertex-disjoint -paths (i.e., paths each with at least five vertices). is NP-hard and admits an existing local-search-based approximation algorithm which achieves a ratio of and runs in time. In this paper, we present a new approximation algorithm for which achieves a ratio of 2.511 and runs in time. Unlike the previous algorithm, the new algorithm is based on maximum matching, maximum path-cycle cover, and recursion.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.