铟和砷组成对分子束外延生长InGaAsSb/AlGaAsSb多量子阱结构特性的影响

IF 2 4区 材料科学 Q3 CRYSTALLOGRAPHY
Ayşe Aygül Ergürhan , Burcu Arpapay , Sabahattin Erinç Erenoğlu , Mustafa Kulakcı , Behçet Özgür Alaydin , Didem Altun , Uğur Serincan
{"title":"铟和砷组成对分子束外延生长InGaAsSb/AlGaAsSb多量子阱结构特性的影响","authors":"Ayşe Aygül Ergürhan ,&nbsp;Burcu Arpapay ,&nbsp;Sabahattin Erinç Erenoğlu ,&nbsp;Mustafa Kulakcı ,&nbsp;Behçet Özgür Alaydin ,&nbsp;Didem Altun ,&nbsp;Uğur Serincan","doi":"10.1016/j.jcrysgro.2025.128330","DOIUrl":null,"url":null,"abstract":"<div><div>InGaAsSb/AlGaAsSb multiple quantum well (MQW) structures, with their narrow band gap quaternary compositions, are well suited for devices operating in the 2–3 µm mid-infrared spectral region. In this study, to investigate the effects of compositional variation on structural properties, twenty-period MQW structures were grown by molecular beam epitaxy on (100) GaSb substrates. It was demonstrated that varying the In and As concentrations while keeping the V/III beam equivalent pressure ratio constant significantly influenced the surface morphology due to defect formation. It was found that in the samples with In concentrations ranging from 30 to 44%, low As content resulted in an increase in the number of surface defects. However, a smooth, defect-free surface and improved crystal quality were achieved at 44% In content when the As concentration in the QWs was 14% or higher. These results highlight the importance of precise compositional tuning for achieving high structural quality in mid-infrared MQW devices.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"670 ","pages":"Article 128330"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Indium and Arsenic composition on structural properties of InGaAsSb/AlGaAsSb multi-quantum wells grown by molecular beam epitaxy\",\"authors\":\"Ayşe Aygül Ergürhan ,&nbsp;Burcu Arpapay ,&nbsp;Sabahattin Erinç Erenoğlu ,&nbsp;Mustafa Kulakcı ,&nbsp;Behçet Özgür Alaydin ,&nbsp;Didem Altun ,&nbsp;Uğur Serincan\",\"doi\":\"10.1016/j.jcrysgro.2025.128330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>InGaAsSb/AlGaAsSb multiple quantum well (MQW) structures, with their narrow band gap quaternary compositions, are well suited for devices operating in the 2–3 µm mid-infrared spectral region. In this study, to investigate the effects of compositional variation on structural properties, twenty-period MQW structures were grown by molecular beam epitaxy on (100) GaSb substrates. It was demonstrated that varying the In and As concentrations while keeping the V/III beam equivalent pressure ratio constant significantly influenced the surface morphology due to defect formation. It was found that in the samples with In concentrations ranging from 30 to 44%, low As content resulted in an increase in the number of surface defects. However, a smooth, defect-free surface and improved crystal quality were achieved at 44% In content when the As concentration in the QWs was 14% or higher. These results highlight the importance of precise compositional tuning for achieving high structural quality in mid-infrared MQW devices.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"670 \",\"pages\":\"Article 128330\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024825002842\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024825002842","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

InGaAsSb/AlGaAsSb多量子阱(MQW)结构具有窄带隙季元成分,非常适合在2-3µm中红外光谱区域工作的器件。在本研究中,为了研究成分变化对结构性能的影响,我们在(100)GaSb衬底上通过分子束外延生长了20周期的MQW结构。结果表明,在保持V/III光束等效压力比不变的情况下,改变In和As浓度会显著影响由于缺陷形成的表面形貌。结果表明,在in浓度为30 ~ 44%的样品中,低As含量导致表面缺陷数量增加。然而,当砷含量为44%时,当砷含量为14%或更高时,晶体表面光滑,无缺陷,晶体质量得到改善。这些结果强调了精确的成分调谐对于实现中红外MQW器件的高结构质量的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Indium and Arsenic composition on structural properties of InGaAsSb/AlGaAsSb multi-quantum wells grown by molecular beam epitaxy
InGaAsSb/AlGaAsSb multiple quantum well (MQW) structures, with their narrow band gap quaternary compositions, are well suited for devices operating in the 2–3 µm mid-infrared spectral region. In this study, to investigate the effects of compositional variation on structural properties, twenty-period MQW structures were grown by molecular beam epitaxy on (100) GaSb substrates. It was demonstrated that varying the In and As concentrations while keeping the V/III beam equivalent pressure ratio constant significantly influenced the surface morphology due to defect formation. It was found that in the samples with In concentrations ranging from 30 to 44%, low As content resulted in an increase in the number of surface defects. However, a smooth, defect-free surface and improved crystal quality were achieved at 44% In content when the As concentration in the QWs was 14% or higher. These results highlight the importance of precise compositional tuning for achieving high structural quality in mid-infrared MQW devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信