具有特殊初始数据的周期域热方程

IF 2.3 2区 数学 Q1 MATHEMATICS
Marcus Rosenberg, Jari Taskinen
{"title":"具有特殊初始数据的周期域热方程","authors":"Marcus Rosenberg,&nbsp;Jari Taskinen","doi":"10.1016/j.jde.2025.113754","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial-boundary value problem with the Neumann boundary condition for the classical linear heat equation in unbounded domains <span><math><mi>Ω</mi><mo>⊊</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which are periodic in all directions of the Cartesian coordinate system. Generalizing the results of a previous paper by the authors, we apply Floquet transform methods to obtain results on the large time decay rates of the solution in the sup-norm. We observe that for a general, integrable initial data, the solution decays at the same rate <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> as in the case of the Cauchy problem in the entire Euclidean space. We also consider special initial data with vanishing <em>x</em>-integral and obtain a faster decay rate. In the main results of the paper we pose for the initial data certain more detailed conditions, which are related to the lowest eigenvalue and eigenfunction of the model problem coming from the Floquet transform. Faster decay rates are obtained for such initial data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113754"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat equation in a periodic domain with special initial data\",\"authors\":\"Marcus Rosenberg,&nbsp;Jari Taskinen\",\"doi\":\"10.1016/j.jde.2025.113754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the initial-boundary value problem with the Neumann boundary condition for the classical linear heat equation in unbounded domains <span><math><mi>Ω</mi><mo>⊊</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which are periodic in all directions of the Cartesian coordinate system. Generalizing the results of a previous paper by the authors, we apply Floquet transform methods to obtain results on the large time decay rates of the solution in the sup-norm. We observe that for a general, integrable initial data, the solution decays at the same rate <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> as in the case of the Cauchy problem in the entire Euclidean space. We also consider special initial data with vanishing <em>x</em>-integral and obtain a faster decay rate. In the main results of the paper we pose for the initial data certain more detailed conditions, which are related to the lowest eigenvalue and eigenfunction of the model problem coming from the Floquet transform. Faster decay rates are obtained for such initial data.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113754\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007818\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007818","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑无界域Ω≠Rd中经典线性热方程的Neumann边界条件的初边值问题,这些无界域在笛卡尔坐标系的所有方向上都是周期性的。在推广前人研究成果的基础上,应用Floquet变换方法得到了超范数下解的大时间衰减率的结果。我们观察到,对于一般的可积初始数据,解在整个欧几里德空间中以与柯西问题相同的速率t - d/2衰减。我们还考虑了x积分消失的特殊初始数据,得到了更快的衰减率。在本文的主要结果中,我们对初始数据提出了一些更详细的条件,这些条件与来自Floquet变换的模型问题的最低特征值和特征函数有关。对于这样的初始数据,衰减速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat equation in a periodic domain with special initial data
We consider the initial-boundary value problem with the Neumann boundary condition for the classical linear heat equation in unbounded domains ΩRd which are periodic in all directions of the Cartesian coordinate system. Generalizing the results of a previous paper by the authors, we apply Floquet transform methods to obtain results on the large time decay rates of the solution in the sup-norm. We observe that for a general, integrable initial data, the solution decays at the same rate td/2 as in the case of the Cauchy problem in the entire Euclidean space. We also consider special initial data with vanishing x-integral and obtain a faster decay rate. In the main results of the paper we pose for the initial data certain more detailed conditions, which are related to the lowest eigenvalue and eigenfunction of the model problem coming from the Floquet transform. Faster decay rates are obtained for such initial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信