钙钛矿/ACIGS串联太阳能电池光吸收和传输层效应的优化

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Nour El I. Boukortt , Antonio Garcia Loureiro , Johan Lauwaert
{"title":"钙钛矿/ACIGS串联太阳能电池光吸收和传输层效应的优化","authors":"Nour El I. Boukortt ,&nbsp;Antonio Garcia Loureiro ,&nbsp;Johan Lauwaert","doi":"10.1016/j.solmat.2025.113943","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive numerical investigation of two-terminal (2T) perovskite/ACIGS tandem solar cells using Silvaco TCAD tools, aiming to guide the design of high-efficiency tandem configuration. The subcells were calibrated based on data from experimentally fabricated perovskite and ACIGS devices, with a band-to-band tunneling junction employed to enable efficient carrier recombination. Despite successful stacking, the tandem configuration exhibits a <em>V</em><sub><em>oc</em></sub> loss of ∼28 mV before subcells matching, attributed to interfacial limitations in the top subcell. To address this, we explored the interplay of optical transparency, defect passivation, and charge transport by (1) selecting perovskite materials with tailored optoelectronic properties and thickness profiles, and (2) optimizing the electron transport layer (ETL) to minimize interfacial trap density and enhance charge extraction. Our optimized tandem structure achieves a simulated power conversion efficiency of 30.71 %, with a <em>J</em><sub><em>sc</em></sub> of 18.51 mA/cm<sup>2</sup>, a <em>V</em><sub><em>oc</em></sub> of 2.05 V, and an <em>FF</em> of 80.97 %. The device further demonstrates enhanced thermal stability, with improved temperature coefficients for voltage (−0.164 %K<sup>−1</sup>), current (−3.85 × 10<sup>−6</sup> %K<sup>−1</sup>), and power (−0.183 %K<sup>−1</sup>), outperforming baseline models and silicon references. Comparative benchmarking confirms the effectiveness of the proposed strategy. This work not only advances predictive modeling of tandem photovoltaics but also offers actionable insights for overcoming interfacial and optical bottlenecks, paving the way for next-generation high-performance solar technologies.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 113943"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of optical absorption and transport layer effects on Perovskite/ACIGS tandem solar cells\",\"authors\":\"Nour El I. Boukortt ,&nbsp;Antonio Garcia Loureiro ,&nbsp;Johan Lauwaert\",\"doi\":\"10.1016/j.solmat.2025.113943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a comprehensive numerical investigation of two-terminal (2T) perovskite/ACIGS tandem solar cells using Silvaco TCAD tools, aiming to guide the design of high-efficiency tandem configuration. The subcells were calibrated based on data from experimentally fabricated perovskite and ACIGS devices, with a band-to-band tunneling junction employed to enable efficient carrier recombination. Despite successful stacking, the tandem configuration exhibits a <em>V</em><sub><em>oc</em></sub> loss of ∼28 mV before subcells matching, attributed to interfacial limitations in the top subcell. To address this, we explored the interplay of optical transparency, defect passivation, and charge transport by (1) selecting perovskite materials with tailored optoelectronic properties and thickness profiles, and (2) optimizing the electron transport layer (ETL) to minimize interfacial trap density and enhance charge extraction. Our optimized tandem structure achieves a simulated power conversion efficiency of 30.71 %, with a <em>J</em><sub><em>sc</em></sub> of 18.51 mA/cm<sup>2</sup>, a <em>V</em><sub><em>oc</em></sub> of 2.05 V, and an <em>FF</em> of 80.97 %. The device further demonstrates enhanced thermal stability, with improved temperature coefficients for voltage (−0.164 %K<sup>−1</sup>), current (−3.85 × 10<sup>−6</sup> %K<sup>−1</sup>), and power (−0.183 %K<sup>−1</sup>), outperforming baseline models and silicon references. Comparative benchmarking confirms the effectiveness of the proposed strategy. This work not only advances predictive modeling of tandem photovoltaics but also offers actionable insights for overcoming interfacial and optical bottlenecks, paving the way for next-generation high-performance solar technologies.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"295 \",\"pages\":\"Article 113943\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825005446\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825005446","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用Silvaco TCAD工具对双端(2T)钙钛矿/ACIGS串联太阳能电池进行了全面的数值研究,旨在指导高效串联结构的设计。亚电池基于实验制备的钙钛矿和ACIGS器件的数据进行校准,采用带对带隧道结实现高效载流子重组。尽管堆叠成功,串联结构在子电池匹配之前显示出约28 mV的Voc损失,这归因于顶部子电池的界面限制。为了解决这个问题,我们通过(1)选择具有定制光电特性和厚度分布的钙钛矿材料,以及(2)优化电子传输层(ETL)以最小化界面陷阱密度并增强电荷提取,探索了光学透明度,缺陷钝化和电荷传输的相互作用。优化后的串联结构的模拟功率转换效率为30.71%,Jsc为18.51 mA/cm2, Voc为2.05 V, FF为80.97%。该器件进一步证明了增强的热稳定性,改善了电压(- 0.164% K−1),电流(- 3.85 × 10 - 6% K−1)和功率(- 0.183% K−1)的温度系数,优于基准模型和硅参考。比较基准测试证实了建议策略的有效性。这项工作不仅推进了串联光伏的预测建模,而且为克服界面和光学瓶颈提供了可行的见解,为下一代高性能太阳能技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of optical absorption and transport layer effects on Perovskite/ACIGS tandem solar cells
This study presents a comprehensive numerical investigation of two-terminal (2T) perovskite/ACIGS tandem solar cells using Silvaco TCAD tools, aiming to guide the design of high-efficiency tandem configuration. The subcells were calibrated based on data from experimentally fabricated perovskite and ACIGS devices, with a band-to-band tunneling junction employed to enable efficient carrier recombination. Despite successful stacking, the tandem configuration exhibits a Voc loss of ∼28 mV before subcells matching, attributed to interfacial limitations in the top subcell. To address this, we explored the interplay of optical transparency, defect passivation, and charge transport by (1) selecting perovskite materials with tailored optoelectronic properties and thickness profiles, and (2) optimizing the electron transport layer (ETL) to minimize interfacial trap density and enhance charge extraction. Our optimized tandem structure achieves a simulated power conversion efficiency of 30.71 %, with a Jsc of 18.51 mA/cm2, a Voc of 2.05 V, and an FF of 80.97 %. The device further demonstrates enhanced thermal stability, with improved temperature coefficients for voltage (−0.164 %K−1), current (−3.85 × 10−6 %K−1), and power (−0.183 %K−1), outperforming baseline models and silicon references. Comparative benchmarking confirms the effectiveness of the proposed strategy. This work not only advances predictive modeling of tandem photovoltaics but also offers actionable insights for overcoming interfacial and optical bottlenecks, paving the way for next-generation high-performance solar technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信