{"title":"无滑移边界条件下可压缩无阻力磁流体动力学方程的消失黏度极限","authors":"Qiangchang Ju , Jiawei Wang , Feng Xie","doi":"10.1016/j.jde.2025.113749","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the vanishing viscosity limit of the three dimensional compressible non-resistive magnetohydrodynamic equations with the no-slip boundary condition in the half-space. Assuming that the initial normal magnetic field is non-degenerate, by identifying a new cancellation structure in the momentum equation, we can use the tangential derivatives of solutions to control the normal derivatives of the magnetic field and pressure. Furthermore, we establish uniform regularity estimates of solutions to the initial-boundary value problem of the compressible non-resistive magnetohydrodynamic equations in conormal Sobolev spaces. Then, based on these uniform regularity estimates and the compactness arguments, the vanishing viscosity limit of solutions to the compressible non-resistive magnetohydrodynamic equations is rigorously verified in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> sense.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113749"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanishing viscosity limit of compressible non-resistive magnetohydrodynamic equations with the no-slip boundary condition\",\"authors\":\"Qiangchang Ju , Jiawei Wang , Feng Xie\",\"doi\":\"10.1016/j.jde.2025.113749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the vanishing viscosity limit of the three dimensional compressible non-resistive magnetohydrodynamic equations with the no-slip boundary condition in the half-space. Assuming that the initial normal magnetic field is non-degenerate, by identifying a new cancellation structure in the momentum equation, we can use the tangential derivatives of solutions to control the normal derivatives of the magnetic field and pressure. Furthermore, we establish uniform regularity estimates of solutions to the initial-boundary value problem of the compressible non-resistive magnetohydrodynamic equations in conormal Sobolev spaces. Then, based on these uniform regularity estimates and the compactness arguments, the vanishing viscosity limit of solutions to the compressible non-resistive magnetohydrodynamic equations is rigorously verified in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> sense.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113749\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007764\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007764","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Vanishing viscosity limit of compressible non-resistive magnetohydrodynamic equations with the no-slip boundary condition
In this paper, we consider the vanishing viscosity limit of the three dimensional compressible non-resistive magnetohydrodynamic equations with the no-slip boundary condition in the half-space. Assuming that the initial normal magnetic field is non-degenerate, by identifying a new cancellation structure in the momentum equation, we can use the tangential derivatives of solutions to control the normal derivatives of the magnetic field and pressure. Furthermore, we establish uniform regularity estimates of solutions to the initial-boundary value problem of the compressible non-resistive magnetohydrodynamic equations in conormal Sobolev spaces. Then, based on these uniform regularity estimates and the compactness arguments, the vanishing viscosity limit of solutions to the compressible non-resistive magnetohydrodynamic equations is rigorously verified in sense.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics