自旋轨道耦合驱动的A2WCl6钙钛矿:DFT探索H2生成和CO2转化的电子、光学和光催化潜力

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mohamed El Amine El Goutni , Hela Ferjani , Mohammed Batouche , Taieb Seddik
{"title":"自旋轨道耦合驱动的A2WCl6钙钛矿:DFT探索H2生成和CO2转化的电子、光学和光催化潜力","authors":"Mohamed El Amine El Goutni ,&nbsp;Hela Ferjani ,&nbsp;Mohammed Batouche ,&nbsp;Taieb Seddik","doi":"10.1016/j.jpcs.2025.113153","DOIUrl":null,"url":null,"abstract":"<div><div>The global climate crisis necessitates sustainable energy solutions, driving research into photocatalytic materials for hydrogen production and CO<sub>2</sub> reduction. This study employs density functional theory (DFT) within the WIEN2k framework to investigate vacancy-ordered double perovskites A<sub>2</sub>WCl<sub>6</sub> (A = Cs, Rb, K, Tl) for photocatalytic and photovoltaic applications. Using the FP-APW + lo method with Wu–Cohen GGA, TB-mBJ corrections, and spin-orbit coupling (SOC), we analyze their structural, mechanical, electronic, and optical properties. The A-site modulation yields direct band gaps of 3.02 eV (Cs), 2.78 eV (Rb), 2.45 eV (K), and 2.22 eV (Tl), with half-metallic ferromagnetic behavior confirmed via spin-polarized calculations (α-spin: metallic, β-spin: semiconducting). Mechanical stability is affirmed by bulk moduli (38.25–42.98 GPa) and B/G ratios (1.97–2.52), ensuring durability in aqueous environments. Optical analyses reveal high visible-light absorption (19.5–33 × 10<sup>5</sup> cm<sup>−1</sup>), low reflectivity (18–25 %), minimal energy loss (&lt;0.5), and tunable exciton binding energies (22.1–42.8 meV), ideal for photocatalysis. Band edge alignments indicate Cs<sub>2</sub>WCl<sub>6</sub> and Rb<sub>2</sub>WCl<sub>6</sub>'s suitability for dual water splitting and CO<sub>2</sub> reduction, while K<sub>2</sub>WCl<sub>6</sub> and Tl<sub>2</sub>WCl<sub>6</sub> require band engineering. These findings position A<sub>2</sub>WCl<sub>6</sub> as promising, stable photocatalysts, with A-site engineering offering precise tunability for solar-driven applications, contributing to sustainable energy advancements.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113153"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-orbit coupling driven A2WCl6 perovskites: DFT exploration of electronic, optical, and photocatalytic potential for H2 generation and CO2 conversion\",\"authors\":\"Mohamed El Amine El Goutni ,&nbsp;Hela Ferjani ,&nbsp;Mohammed Batouche ,&nbsp;Taieb Seddik\",\"doi\":\"10.1016/j.jpcs.2025.113153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global climate crisis necessitates sustainable energy solutions, driving research into photocatalytic materials for hydrogen production and CO<sub>2</sub> reduction. This study employs density functional theory (DFT) within the WIEN2k framework to investigate vacancy-ordered double perovskites A<sub>2</sub>WCl<sub>6</sub> (A = Cs, Rb, K, Tl) for photocatalytic and photovoltaic applications. Using the FP-APW + lo method with Wu–Cohen GGA, TB-mBJ corrections, and spin-orbit coupling (SOC), we analyze their structural, mechanical, electronic, and optical properties. The A-site modulation yields direct band gaps of 3.02 eV (Cs), 2.78 eV (Rb), 2.45 eV (K), and 2.22 eV (Tl), with half-metallic ferromagnetic behavior confirmed via spin-polarized calculations (α-spin: metallic, β-spin: semiconducting). Mechanical stability is affirmed by bulk moduli (38.25–42.98 GPa) and B/G ratios (1.97–2.52), ensuring durability in aqueous environments. Optical analyses reveal high visible-light absorption (19.5–33 × 10<sup>5</sup> cm<sup>−1</sup>), low reflectivity (18–25 %), minimal energy loss (&lt;0.5), and tunable exciton binding energies (22.1–42.8 meV), ideal for photocatalysis. Band edge alignments indicate Cs<sub>2</sub>WCl<sub>6</sub> and Rb<sub>2</sub>WCl<sub>6</sub>'s suitability for dual water splitting and CO<sub>2</sub> reduction, while K<sub>2</sub>WCl<sub>6</sub> and Tl<sub>2</sub>WCl<sub>6</sub> require band engineering. These findings position A<sub>2</sub>WCl<sub>6</sub> as promising, stable photocatalysts, with A-site engineering offering precise tunability for solar-driven applications, contributing to sustainable energy advancements.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 113153\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725006067\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725006067","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球气候危机需要可持续的能源解决方案,推动了对用于制氢和减少二氧化碳的光催化材料的研究。本研究采用WIEN2k框架下的密度泛函理论(DFT)研究了空位有序双钙钛矿A2WCl6 (A = Cs, Rb, K, Tl)的光催化和光伏应用。利用FP-APW + lo方法,结合Wu-Cohen GGA、TB-mBJ校正和自旋轨道耦合(SOC),分析了它们的结构、力学、电子和光学性质。a位调制产生了3.02 eV (Cs), 2.78 eV (Rb), 2.45 eV (K)和2.22 eV (Tl)的直接带隙,并通过自旋极化计算(α-自旋:金属,β-自旋:半导体)证实了半金属铁磁行为。体积模量(38.25-42.98 GPa)和B/G比(1.97-2.52)确认了机械稳定性,确保了在水环境中的耐久性。光学分析显示高可见光吸收率(19.5-33 × 105 cm−1),低反射率(18 - 25%),最小的能量损失(<0.5)和可调的激子结合能(22.1-42.8 meV),是光催化的理想选择。条带边缘比对表明,Cs2WCl6和Rb2WCl6适合双水分解和CO2还原,而K2WCl6和Tl2WCl6则需要进行条带工程。这些发现表明A2WCl6是一种有前途的、稳定的光催化剂,A-site工程为太阳能驱动的应用提供了精确的可调性,有助于可持续能源的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin-orbit coupling driven A2WCl6 perovskites: DFT exploration of electronic, optical, and photocatalytic potential for H2 generation and CO2 conversion
The global climate crisis necessitates sustainable energy solutions, driving research into photocatalytic materials for hydrogen production and CO2 reduction. This study employs density functional theory (DFT) within the WIEN2k framework to investigate vacancy-ordered double perovskites A2WCl6 (A = Cs, Rb, K, Tl) for photocatalytic and photovoltaic applications. Using the FP-APW + lo method with Wu–Cohen GGA, TB-mBJ corrections, and spin-orbit coupling (SOC), we analyze their structural, mechanical, electronic, and optical properties. The A-site modulation yields direct band gaps of 3.02 eV (Cs), 2.78 eV (Rb), 2.45 eV (K), and 2.22 eV (Tl), with half-metallic ferromagnetic behavior confirmed via spin-polarized calculations (α-spin: metallic, β-spin: semiconducting). Mechanical stability is affirmed by bulk moduli (38.25–42.98 GPa) and B/G ratios (1.97–2.52), ensuring durability in aqueous environments. Optical analyses reveal high visible-light absorption (19.5–33 × 105 cm−1), low reflectivity (18–25 %), minimal energy loss (<0.5), and tunable exciton binding energies (22.1–42.8 meV), ideal for photocatalysis. Band edge alignments indicate Cs2WCl6 and Rb2WCl6's suitability for dual water splitting and CO2 reduction, while K2WCl6 and Tl2WCl6 require band engineering. These findings position A2WCl6 as promising, stable photocatalysts, with A-site engineering offering precise tunability for solar-driven applications, contributing to sustainable energy advancements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信