基于Dirichlet权重的通用投资组合因子预测

IF 0.9 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Purushottam Parthasarathy , Avinash Bhardwaj , Manjesh K. Hanawal
{"title":"基于Dirichlet权重的通用投资组合因子预测","authors":"Purushottam Parthasarathy ,&nbsp;Avinash Bhardwaj ,&nbsp;Manjesh K. Hanawal","doi":"10.1016/j.orl.2025.107360","DOIUrl":null,"url":null,"abstract":"<div><div>We revisit the online portfolio allocation problem that seeks to maximize the long term portfolio growth rate. We propose a new technique that modifies the concentration parameter of the Dirichlet distribution to incorporate cross-sectional return forecasts into the universal portfolio. We analytically establish that under certain conditions, the wealth generated by the factor Dirichlet portfolio dominates that generated by its uniform Dirichlet counterpart. We corroborate our analytical results with empirical studies on equity markets.</div></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"63 ","pages":"Article 107360"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factor based forecasts in universal portfolios via Dirichlet weights\",\"authors\":\"Purushottam Parthasarathy ,&nbsp;Avinash Bhardwaj ,&nbsp;Manjesh K. Hanawal\",\"doi\":\"10.1016/j.orl.2025.107360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We revisit the online portfolio allocation problem that seeks to maximize the long term portfolio growth rate. We propose a new technique that modifies the concentration parameter of the Dirichlet distribution to incorporate cross-sectional return forecasts into the universal portfolio. We analytically establish that under certain conditions, the wealth generated by the factor Dirichlet portfolio dominates that generated by its uniform Dirichlet counterpart. We corroborate our analytical results with empirical studies on equity markets.</div></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"63 \",\"pages\":\"Article 107360\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016763772500121X\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016763772500121X","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们重新审视在线投资组合分配问题,寻求最大化长期投资组合增长率。我们提出了一种新的技术,修改狄利克雷分布的集中参数,将截面收益预测纳入到通用投资组合中。分析证明,在一定条件下,因子狄利克雷投资组合产生的财富优于均匀狄利克雷投资组合产生的财富。我们用股票市场的实证研究证实了我们的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factor based forecasts in universal portfolios via Dirichlet weights
We revisit the online portfolio allocation problem that seeks to maximize the long term portfolio growth rate. We propose a new technique that modifies the concentration parameter of the Dirichlet distribution to incorporate cross-sectional return forecasts into the universal portfolio. We analytically establish that under certain conditions, the wealth generated by the factor Dirichlet portfolio dominates that generated by its uniform Dirichlet counterpart. We corroborate our analytical results with empirical studies on equity markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信