{"title":"研究漏极连接场极板非晶InGaZnO薄膜晶体管的不饱和输出特性及其潜在应用","authors":"Po-Hsun Chen , Yung-Fang Tan , Yen-Che Huang","doi":"10.1016/j.mee.2025.112399","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a via-hole type thin-film transistor (TFT) device based on indium–gallium–zinc–oxide (IGZO) material with the drain-connected field plate (DCFP) structure is investigated. Compared to the traditional symmetric source/drain structure, the device with DCFP exhibits unsaturated output drain current properties during operation. Also, according to the electrical measurements and the simulation results, a high electrical field is generated on the etching stop layer (ESL) right underneath the extended field plate, resulting in the effect of drain-induced barrier lowering (DIBL) and the shifts of threshold voltage (Vt). On the other hand, the unsaturated output characteristics are applied as a variable resistor according to the given gate bias (Vg). Therefore, a high pass filter (HPF) circuit is demonstrated based on the TFT device with the DCFP structure, which suggests its potential application for variable resistors based on the gate bias in the future circuit designs.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"301 ","pages":"Article 112399"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating unsaturated output characteristics and potential applications of amorphous InGaZnO thin-film transistors with drain-connected field plate\",\"authors\":\"Po-Hsun Chen , Yung-Fang Tan , Yen-Che Huang\",\"doi\":\"10.1016/j.mee.2025.112399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a via-hole type thin-film transistor (TFT) device based on indium–gallium–zinc–oxide (IGZO) material with the drain-connected field plate (DCFP) structure is investigated. Compared to the traditional symmetric source/drain structure, the device with DCFP exhibits unsaturated output drain current properties during operation. Also, according to the electrical measurements and the simulation results, a high electrical field is generated on the etching stop layer (ESL) right underneath the extended field plate, resulting in the effect of drain-induced barrier lowering (DIBL) and the shifts of threshold voltage (Vt). On the other hand, the unsaturated output characteristics are applied as a variable resistor according to the given gate bias (Vg). Therefore, a high pass filter (HPF) circuit is demonstrated based on the TFT device with the DCFP structure, which suggests its potential application for variable resistors based on the gate bias in the future circuit designs.</div></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":\"301 \",\"pages\":\"Article 112399\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931725000887\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931725000887","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigating unsaturated output characteristics and potential applications of amorphous InGaZnO thin-film transistors with drain-connected field plate
In this study, a via-hole type thin-film transistor (TFT) device based on indium–gallium–zinc–oxide (IGZO) material with the drain-connected field plate (DCFP) structure is investigated. Compared to the traditional symmetric source/drain structure, the device with DCFP exhibits unsaturated output drain current properties during operation. Also, according to the electrical measurements and the simulation results, a high electrical field is generated on the etching stop layer (ESL) right underneath the extended field plate, resulting in the effect of drain-induced barrier lowering (DIBL) and the shifts of threshold voltage (Vt). On the other hand, the unsaturated output characteristics are applied as a variable resistor according to the given gate bias (Vg). Therefore, a high pass filter (HPF) circuit is demonstrated based on the TFT device with the DCFP structure, which suggests its potential application for variable resistors based on the gate bias in the future circuit designs.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.