Hao Xu, Yimin Zhang, Qinru Bai, Linli He, Qihao Chen, Yunlong Qiu, Renjie Li, Jie Yu, Jun Zhao, Yan Zhao
{"title":"人GABA转运体的底物和抑制剂结合3","authors":"Hao Xu, Yimin Zhang, Qinru Bai, Linli He, Qihao Chen, Yunlong Qiu, Renjie Li, Jie Yu, Jun Zhao, Yan Zhao","doi":"10.1016/j.str.2025.08.012","DOIUrl":null,"url":null,"abstract":"GABA (g-aminobutyric acid) transporter 3 (GAT3) is primarily found in glial cells and is essential for regulating GABA homeostasis in the central nervous system by mediating GABA uptake. Consequently, GAT3 has emerged as a significant therapeutic target for the treatment of epilepsy. In this study, we present the cryoelectron microscopy (cryo-EM) structures of GAT3 bound to its substrate GABA, the selective inhibitor SNAP-5114, and in the substrate-free state. GAT3 binds to GABA in an inward-facing conformation, while SNAP-5114 occupies the GABA-binding pocket and is stabilized by extensive interactions with surrounding residues. Functional studies reveal that E66 plays a pivotal role in determining the substrate-binding mode and specificity of SNAP-5114 binding. Taken together, our study clarifies the GABA binding mechanism of GAT3 and reveals the molecular basis for the specific inhibition of SNAP-5114, offering valuable insights for developing GAT3 subtypes selective inhibitors, which hold potential as a treatment for epilepsy.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"39 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substrate and inhibitor binding of human GABA transporter 3\",\"authors\":\"Hao Xu, Yimin Zhang, Qinru Bai, Linli He, Qihao Chen, Yunlong Qiu, Renjie Li, Jie Yu, Jun Zhao, Yan Zhao\",\"doi\":\"10.1016/j.str.2025.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GABA (g-aminobutyric acid) transporter 3 (GAT3) is primarily found in glial cells and is essential for regulating GABA homeostasis in the central nervous system by mediating GABA uptake. Consequently, GAT3 has emerged as a significant therapeutic target for the treatment of epilepsy. In this study, we present the cryoelectron microscopy (cryo-EM) structures of GAT3 bound to its substrate GABA, the selective inhibitor SNAP-5114, and in the substrate-free state. GAT3 binds to GABA in an inward-facing conformation, while SNAP-5114 occupies the GABA-binding pocket and is stabilized by extensive interactions with surrounding residues. Functional studies reveal that E66 plays a pivotal role in determining the substrate-binding mode and specificity of SNAP-5114 binding. Taken together, our study clarifies the GABA binding mechanism of GAT3 and reveals the molecular basis for the specific inhibition of SNAP-5114, offering valuable insights for developing GAT3 subtypes selective inhibitors, which hold potential as a treatment for epilepsy.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.08.012\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.08.012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Substrate and inhibitor binding of human GABA transporter 3
GABA (g-aminobutyric acid) transporter 3 (GAT3) is primarily found in glial cells and is essential for regulating GABA homeostasis in the central nervous system by mediating GABA uptake. Consequently, GAT3 has emerged as a significant therapeutic target for the treatment of epilepsy. In this study, we present the cryoelectron microscopy (cryo-EM) structures of GAT3 bound to its substrate GABA, the selective inhibitor SNAP-5114, and in the substrate-free state. GAT3 binds to GABA in an inward-facing conformation, while SNAP-5114 occupies the GABA-binding pocket and is stabilized by extensive interactions with surrounding residues. Functional studies reveal that E66 plays a pivotal role in determining the substrate-binding mode and specificity of SNAP-5114 binding. Taken together, our study clarifies the GABA binding mechanism of GAT3 and reveals the molecular basis for the specific inhibition of SNAP-5114, offering valuable insights for developing GAT3 subtypes selective inhibitors, which hold potential as a treatment for epilepsy.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.