电化学分解锂离子电池的声发射

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-09-05 DOI:10.1016/j.joule.2025.102108
Yash Samantaray, Daniel A. Cogswell, Alexander E. Cohen, Martin Z. Bazant
{"title":"电化学分解锂离子电池的声发射","authors":"Yash Samantaray, Daniel A. Cogswell, Alexander E. Cohen, Martin Z. Bazant","doi":"10.1016/j.joule.2025.102108","DOIUrl":null,"url":null,"abstract":"New methods of <em>operando</em> non-destructive evaluation (NDE) are needed to better assess the health and safety of Li-ion batteries. Acoustic emission (AE) testing is a widely used NDE technique in structural engineering but has yet to provide reliable assessments in battery applications. Here, we show that various electro-chemo-mechanical processes in battery electrodes (graphite and nickel-manganese-cobalt oxides [NMC]) can be reproducibly identified by electrochemically resolved AEs after eliminating electromagnetic interference and applying wavelet-based signal processing. First, we perform “acousto-voltammetry” to correlate acoustic activity with specific electrochemical processes, such as ethylene gas generation and NMC particle fracture, as confirmed by gas detection and <em>ex situ</em> scanning electron microscopy (SEM) imaging, respectively. Next, we demonstrate that AEs can be distinguished using wavelet-transform features. Electrochemically resolved AEs provide a new window into quantitatively monitoring battery degradation, offering insights into electro-chemo-mechanical processes and potential advantages over conventional methods for the assessing state of health, remaining useful life, and safety risks.","PeriodicalId":343,"journal":{"name":"Joule","volume":"22 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemically resolved acoustic emissions from Li-ion batteries\",\"authors\":\"Yash Samantaray, Daniel A. Cogswell, Alexander E. Cohen, Martin Z. Bazant\",\"doi\":\"10.1016/j.joule.2025.102108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New methods of <em>operando</em> non-destructive evaluation (NDE) are needed to better assess the health and safety of Li-ion batteries. Acoustic emission (AE) testing is a widely used NDE technique in structural engineering but has yet to provide reliable assessments in battery applications. Here, we show that various electro-chemo-mechanical processes in battery electrodes (graphite and nickel-manganese-cobalt oxides [NMC]) can be reproducibly identified by electrochemically resolved AEs after eliminating electromagnetic interference and applying wavelet-based signal processing. First, we perform “acousto-voltammetry” to correlate acoustic activity with specific electrochemical processes, such as ethylene gas generation and NMC particle fracture, as confirmed by gas detection and <em>ex situ</em> scanning electron microscopy (SEM) imaging, respectively. Next, we demonstrate that AEs can be distinguished using wavelet-transform features. Electrochemically resolved AEs provide a new window into quantitatively monitoring battery degradation, offering insights into electro-chemo-mechanical processes and potential advantages over conventional methods for the assessing state of health, remaining useful life, and safety risks.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.102108\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102108","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地评价锂离子电池的健康和安全,需要新的操作无损评价方法。声发射(AE)测试是一种在结构工程中广泛应用的无损检测技术,但尚未在电池应用中提供可靠的评估。本研究表明,在消除电磁干扰并应用基于小波的信号处理后,电池电极(石墨和镍锰钴氧化物[NMC])中的各种电化学机械过程可以通过电化学分解的ae重复识别。首先,我们使用“声伏安法”将声波活动与特定的电化学过程联系起来,如乙烯气体生成和NMC颗粒断裂,分别通过气体检测和非原位扫描电子显微镜(SEM)成像得到证实。接下来,我们证明了ae可以使用小波变换特征来区分。电化学分解的ae为定量监测电池退化提供了一个新的窗口,提供了对电化学-机械过程的见解,以及在评估健康状态、剩余使用寿命和安全风险方面优于传统方法的潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrochemically resolved acoustic emissions from Li-ion batteries

Electrochemically resolved acoustic emissions from Li-ion batteries
New methods of operando non-destructive evaluation (NDE) are needed to better assess the health and safety of Li-ion batteries. Acoustic emission (AE) testing is a widely used NDE technique in structural engineering but has yet to provide reliable assessments in battery applications. Here, we show that various electro-chemo-mechanical processes in battery electrodes (graphite and nickel-manganese-cobalt oxides [NMC]) can be reproducibly identified by electrochemically resolved AEs after eliminating electromagnetic interference and applying wavelet-based signal processing. First, we perform “acousto-voltammetry” to correlate acoustic activity with specific electrochemical processes, such as ethylene gas generation and NMC particle fracture, as confirmed by gas detection and ex situ scanning electron microscopy (SEM) imaging, respectively. Next, we demonstrate that AEs can be distinguished using wavelet-transform features. Electrochemically resolved AEs provide a new window into quantitatively monitoring battery degradation, offering insights into electro-chemo-mechanical processes and potential advantages over conventional methods for the assessing state of health, remaining useful life, and safety risks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信